Synchrotron-based X-ray absorption spectroscopy has been used to determine the chemical speciation of Np sorbed on Opalinus Clay (OPA, Mont Terri, Switzerland), a natural argillaceous rock revealing a micro-scale heterogeneity. Different sorption and diffusion samples with Np(V) were prepared for spatially resolved molecular-level investigations. Thin sections of OPA contacted with Np(V) solution under aerobic and anaerobic conditions as well as a diffusion sample were analysed spatially resolved. Micro-X-ray fluorescence (μ-XRF) mapping has been used to determine the elemental distributions of Np, Fe and Ca. Regions of high Np concentration were subsequently investigated by micro-X-ray absorption fine structure spectroscopy to determine the oxidation state of Np. Further, micro-X-ray diffraction (μ-XRD) was employed to gain knowledge about reactive crystalline mineral phases in the vicinity of Np enrichments. One thin section was also analysed by electron microprobe to determine the elemental distributions of the lighter elements (especially Si and Al), which represent the main elements of OPA. The results show that in most samples, Np spots with considerable amounts of Np(IV) could be found even when the experiments were carried out in air. In some cases, almost pure Np(IV) L(III)-edge X-ray absorption near-edge structure spectra were recorded. In the case of the anaerobic sample, the μ-XRF mapping showed a clear correlation between Np and Fe, indicating that the reduction of Np(V) is caused by an iron(II)-containing mineral which could be identified by μ-XRD as pyrite. These spatially resolved investigations were complemented by extended X-ray absorption fine structure measurements of powder samples from batch experiments under aerobic and anaerobic conditions to determine the structural parameters of the near-neighbour environment of sorbed Np.
Experimental and theoretical studies were conducted to identify the molecular-scale reaction mechanism for Cr(VI) removal by a ferrous phosphate mineral, vivianite. The surface-normalized rate constant for Cr(VI) removal in a vivianite suspension at pH 7 was higher than those obtained for other Fe(II)-containing minerals (i.e., magnetite and pyrite). The highest rate constant was obtained at pH 5, which was 35- and 264-times higher than those obtained at pH 7 and 9, respectively, indicating the dramatic acceleration of removal kinetics with decreasing pH of suspension. The X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) spectroscopy revealed that Cr(VI) removal involved reduction of Cr(VI) to Cr(III) coupled with oxidation of Fe(II) to Fe(III) on the vivianite surface. In addition, the density functional theory (DFT)-optimized structure of the Cr(VI)-vivianite complex was consistent with that obtained from extended X-ray absorption fine structure (EXAFS) spectroscopy and revealed the transformation of vivianite to amorphous Fe(III) phosphate. We also demonstrated that both Cr(VI) species, HCrO̅ and CrO, can effectively bind to the vivianite surface, particularly on the Fe sites having 6 neighboring Fe molecules with 4 HO and 2 PO moieties. Our results show that Cr(VI) is readily reduced to Cr(III) by vivianite via adsorption and inner-sphere complexation, suggesting that in anoxic iron-phosphate-enriched environments, vivianite may significantly influence the fate and transport of Cr(VI).
The pH dependence (1-7) of Am(III) complexation with lactate in aqueous solution is studied using extended X-ray absorption fine-structure (EXAFS) spectroscopy. Structural data (coordination numbers, Am--O and Am--C distances) of the formed Am(III)-lactate species are determined from the raw k(3)-weighted Am LIII-edge EXAFS spectra. Between pH 1 and pH 6, Am(III) speciation shifts continuously towards complexed species with increasing pH. At higher pH, the amount of complexed species decreases due to formation of hydroxo species. The coordination numbers and distances (3.41-3.43 Å) of the coordinating carbon atoms clearly point out that lactate is bound `side-on' to Am(III) through both the carboxylic and the α-hydroxy function of lactate. The experimentally determined coordination numbers are compared with speciation calculations on the basis of tabulated thermodynamic stability constants. Both EXAFS data and thermodynamic modelling are in very good agreement. The EXAFS spectra are also analyzed by iterative transformation factor analysis to further verify the determined Am(III) speciation and the used structural model.
Capillary electrophoresis (CE) was used to separate the neptunium oxidation states Np(IV) and Np(V), which are the only oxidation states of Np that are stable under environmental conditions. The CE setup was coupled to an inductively coupled plasma mass spectrometer (Agilent 7500ce) using a Mira Mist CE nebulizer and a Scott-type spray chamber. The combination of the separation capacity of CE with the detection sensitivity of inductively coupled plasma mass spectrometry (ICP-MS) allows identification and quantification of Np(IV) and Np(V) at the trace levels expected in the far field of a nuclear waste repository. Limits of detection of 1 × 10(-9) and 5 × 10(-10) mol L(-1) for Np(IV) and Np(V), respectively, were achieved, with a linear range from 10(-9) to 10(-6) mol L(-1). The method was applied to study the redox speciation of the Np remaining in solution after interaction of 5 × 10(-7) mol L(-1) Np(V) with Opalinus Clay. Under mildly oxidizing conditions, a Np sorption of 31% was found, with all the Np remaining in solution being Np(V). A second sorption experiment performed in the presence of Fe(2+) led to complete sorption of the Np onto the clay. After desorption with HClO(4), a mixture of Np(IV) and Np(V) was found in solution by CE-ICP-MS, indicating that some of the sorbed Np had been reduced to Np(IV) by Fe(2+).
but still more than two orders of magnitude higher compared to the values obtained for U(VI) and Np(V). This discrepancy is attributed to the partial reduction of Pu(VI) to Pu(IV) during sorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.