The SHOP2 planning system received one of the awards for distinguished performance in the 2002 International Planning Competition. This paper describes the features of SHOP2 which enabled it to excel in the competition, especially those aspects of SHOP2 that deal with temporal and metric planning domains.
In this article, we describe a new approach that gives an explicit probabilistic interpretation for social networks. In particular, we focus on the observation that many existing Web-based trust-inference algorithms conflate the notions of “trust” and “confidence,” and treat the amalgamation of the two concepts to compute the trust value associated with a social relationship. Unfortunately, the result of such an algorithm that merges trust and confidence is not a trust value, but rather a new variable in the inference process. Thus, it is hard to evaluate the outputs of such an algorithm in the context of trust inference.
This article first describes a formal probabilistic network model for social networks that allows us to address that issue. Then we describe SUNNY, a new trust inference algorithm that uses probabilistic sampling to separately estimate trust information and our confidence in the trust estimate and use the two values in order to compute an estimate of trust based on only those information sources with the highest confidence estimates.
We present an experimental evaluation of SUNNY. In our experiments, SUNNY produced more accurate trust estimates than the well-known trust inference algorithm TidalTrust, demonstrating its effectiveness. Finally, we discuss the implications these results will have on systems designed for personalizing content and making recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.