Ge nanocrystals formed in a SiO 2 matrix by ion implantation were studied by Raman spectroscopy. It is shown that Raman analysis based on the phonon confinement model yields a successful explanation of the peculiar characteristics resulting from the nanocrystals. A broadening and a shift in the Raman peak are expected to result from the reduced size of the crystals. Asymmetry in the peak is attributed to the variations in the size of the nanocrystals. These effects were observed experimentally for the Ge nanocrystals prepared by ion implantation and explained theoretically by incorporating the effect of size and size distribution into the theoretical description of the Raman shift. A comparison with the transmission electron microscopy images indicated that this analysis could be used to estimate the structural properties of nanocrystals embedded in a host matrix. The evolution of nanocrystal formation with annealing temperature, i.e. the size growth, was monitored by Raman spectrometry for several samples and the corresponding nanocrystal sizes were estimated using the phonon confinement model.
Nanocrystalline Ge films were prepared by isotropic chemical etching on single-crystalline Ge substrates with 100 and 111 orientations. The structural and optical properties have been investigated by transmission electron microscopy (TEM), electron diffraction (ED), Raman photoluminescence (PL), and infrared spectroscopy. The average size of nanocrystals (NCs) was estimated by fitting of the Raman spectra using a phonon-confinement model developed for spherical semiconductor NCs. Considered collectively TEM, ED, and Raman results indicate that all films contain high density of 3–4 nm diameter, diamond-structured Ge NCs with disordered surfaces. There are indications that surface of nanoparticles is mainly hydrogen terminated even for air-stabilized samples. Red PL is observed at room temperature upon excitation by 1.96 eV with peak energy of ∼1.55 eV and correlates well with recent theoretical calculations of the enlarged optical gap in Ge NCs of similar size.
Electroluminescence (EL) and photoluminescence (PL) measurements were conducted on Si-implanted SiO 2 layers as a function of process and measurement parameters. Measurable light emission was observed from the metal oxide semiconductor light emitting diode (MOS-LED) when holes are injected from the substrate. It was shown that major PL and EL emissions have the same origin. However, two important differences were observed between EL and PL spectra. The first one is the light emission from the Si substrate due to the recombination of electrons supplied by the front contact and holes that were accumulated in the inversion region at the substrate/SiO 2 interface. This might be a factor reducing the contribution of Si nanocrystals to the EL emission of the MOS-LED structure as a result of decrease in the number of holes in the inversion layer. The second difference is that EL emission peaks stay at a slightly higher energy than PL peaks. It was observed that the EL peak shifts towards the PL peak with increasing bias voltage. This behaviour is explained by considering the size distribution of nanocrystals formed by ion implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.