Spatial restriction of olfactory receptor (OR) gene expression in peripheral sense organs is a common phenomenon across species, suggesting that zonal OR expression somehow contributes to olfactory function. In zebrafish OR expression patterns reminiscent of zones occur as concentric domains with preferred diameters for different ORs. However, the function and the developmental origin of the pattern are unknown. Here we investigate olfactory sensory neuron (OSN) neurogenesis in the adult zebrafish olfactory epithelium (OE) to understand how the zonally organized OR pattern is established and maintained during the lifetime of the animal. We find that OSNs are generated from two discontinuous proliferation zones located at the central and peripheral edge of the sensory OE. OSNs turn on OR expression soon after they exit mitosis and invade the sensory tissue, approaching each other from both ends of the OE. Biased generation of OSN subpopulations at both neurogenic sites and elimination of OSNs along their route across the OE generates the impression of OR-specific expression domains. We formulated a simple mathematical model based on exact parameters derived from our analysis of OSN neurogenesis, which accurately generates OR-like distributions without the need to invoke molecular signals to pattern the OE.
Olfactory sensory neurons (OSNs) of the vertebrate olfactory epithelium (OE) undergo continuous turnover but also regenerate efficiently when the OE is acutely damaged by traumatic injury. Two distinct pools of neuronal stem/progenitor cells, the globose (GBCs), and horizontal basal cells (HBCs) have been shown to selectively contribute to intrinsic OSN turnover and damage-induced OE regeneration, respectively. For both types of progenitors, their rate of cell divisions and OSN production must match the actual loss of cells to maintain or to re-establish sensory function. However, signals that communicate between neurons or glia cells of the OE and resident neurogenic progenitors remain largely elusive. Here, we investigate the effect of purinergic signaling on cell proliferation and OSN neurogenesis in the zebrafish OE. Purine stimulation elicits transient Ca 2+ signals in OSNs and distinct nonneuronal cell populations, which are located exclusively in the basal OE and stain positive for the neuronal stem cell marker Sox2. The more apical population of Sox2-positive cells comprises evenly distributed glia-like sustentacular cells (SCs) and spatially restricted GBC-like cells, whereas the more basal population expresses the HBC markers keratin 5 and tumor protein 63 and lines the entire sensory OE. Importantly, exogenous purine stimulation promotes P2 receptor-dependent mitotic activity and OSN generation from sites where GBCs are located but not from HBCs. We hypothesize that purine compounds released from dying OSNs modulate GBC progenitor cell cycling in a dose-dependent manner that is proportional to the number of dying OSNs and, thereby, ensures a constant pool of sensory neurons over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.