The preferential incorporation of carboxylic acids into aragonite and its effects on the crystal growth and physicochemical properties of aragonite were systematically investigated using a seeded co-precipitation system with different carboxylic acids (citric, malic, acetic, glutamic, and phthalic). Aragonite synthesized in the presence of citric and malic acids showed a remarkable decrease in the crystallinity and size of crystallite, and the retardation of crystal growth distinctively changed the crystal morphology. The contents of citric acid and malic acid in the aragonite samples were 0.65 wt % and 0.19 wt %, respectively, revealing that the changes in the physicochemical properties of aragonite were due to the preferential incorporation of such carboxylic acids. Speciation modeling further confirmed that citric acid with three carboxyl groups dominantly existed as a metal–ligand, (Ca–citrate)−, which could have a strong affinity toward the partially positively charged surface of aragonite. This indicates why citric acid was most favorably incorporated among other carboxylic acids. Our results demonstrate that the number of carboxyl functional groups strongly affects the preferential incorporation of carboxylic acids into aragonite; however, it could be suppressed by the presence of other functional groups or the structural complexity of organic molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.