Follicular atresia is the mechanism by which the oocyte contents are degraded during oogenesis in response to stress conditions, allowing the energetic resources stored in the developing oocytes to be reallocated to optimize female fitness. Autophagy is a conserved intracellular degradation pathway where double-membrane vesicles are formed around target organelles leading to their degradation after lysosome fusion. The autophagy-related protein 8 (ATG8) is conjugated to the autophagic membrane and has a key role in the elongation and closure of the autophagosome. Here we identified one single isoform of ATG8 in the genome of the insect vector of Chagas Disease Rhodnius prolixus (RpATG8) and found that it is highly expressed in the ovary during vitellogenesis. Accordingly, autophagosomes were detected in the vitellogenic oocytes, as seen by immunoblotting and electron microscopy. To test if autophagosomes were important for follicular atresia, we silenced RpATG8 and elicited atresia in vitellogenic females by Zymosan-A injections. We found that silenced females were still able to trigger the same levels of follicle atresia, and that their atretic oocytes presented a characteristic morphology, with accumulated brown aggregates. Regardless of the difference in morphology, RpATG8-silenced atretic oocytes presented the same levels of protein, TAG and PolyP, as detected in control atretic oocytes, as well as the same levels of acidification of the yolk organelles. Because follicular atresia has the ultimate goal of restoring female fitness, we tested if RpATG8-silenced atresia would result in female physiology and behavior changes. Under insectarium conditions, we found that atresia-induced control and RpATG8-silenced females present no changes in blood meal digestion, survival, oviposition, TAG content in the fat body, haemolymph amino acid levels and overall locomotor activity. Altogether, we found that autophagosomes are formed during oogenesis and that the silencing of RpATG8 impairs autophagosome biogenesis in the PLOS Neglected Tropical Diseases | https://doi.
Background Despite antiretroviral treatment efficacy, it does not lead to the complete eradication of HIV infection. Consequently, reactivation of the virus from latently infected cell reservoirs is a major challenge toward cure efforts. Two strategies targeting viral latency are currently under investigation: the “shock and kill” and the “block and lock.” The “Block and Lock” methodology aims to control HIV-1 latency reactivation, promoting a functional cure. We utilized the CRISPR/dCas9-KRAB platform, which was initially developed to suppress cellular genes transcription, to block drug-induced HIV-1 reactivation in latently infected T cells and myeloid cells. Results We identified a set of five sgRNAs targeting the HIV-1 proviral genome (LTR1-LTR5), having the lowest nominated off-target activity, and transduced them into the latently infected lymphoid (J-Lat 10.6) and myeloid (U1) cell lines. One of the sgRNAs (LTR5), which binds specifically in the HIV-1 LTR NFκB binding site, was able to promote robust repression of HIV-1 reactivation in latently infected T cells stimulated with Phorbol 12-Myristate 13-Acetate (PMA) and Ingenol B (IngB), both potent protein kinase C (PKC) stimulators. Reactivation with HDAC inhibitors, such as SAHA and Panobinostat, showed the same strong inhibition of reactivation. Additionally, we observed a hundred times reduction of HIV-1 RNA expression levels in the latently infected myeloid cell line, U1 induced with IngB. Conclusion Taken together, our results show that the KRAB fused CRISPR/dCas9 system can robustly prevent the HIV-1 latency reactivation process, mediated by PMA or IngB and SAHA or Panobinostat, both in myeloid and lymphoid HIV-1 latently infected cells. In addition, we demonstrated that KRAB repressor protein is crucial to reactivation resistance phenotype, and we have identified some useful hotspots sequences in HIV-1 LTR for the design sgRNAs.
Yolk biogenesis and consumption have been well conserved in oviparous animals throughout evolution. Most egg-laying animals store yolk proteins within the oocytes’ yolk granules (Ygs). Following fertilization, the Ygs participate in controlled pathways of yolk breakdown to support the developing embryo’s anabolic metabolism. While the unfolding of the yolk degradation program is a crucial process for successful development in many species, the molecular mechanisms responsible for yolk mobilization are still mysterious and have mostly not been explored. Here, we investigate the functional role of the oocyte maternally accumulated mRNAs of a protein phosphatase (PP501) and two aspartic proteases (cathepsin-D 405, CD405 and cathepsin-D 352, CD352) in the yolk degradation and reproduction of the insect vector of Chagas disease Rhodnius prolixus. We found that PP501 and CD352 are highly expressed in the vitellogenic ovary when compared to the other organs of the adult insect. Parental RNAi silencing of PP501 resulted in a drastic reduction in oviposition and increased embryo lethality whereas the silencing of CD352 resulted only in a slight decrease in oviposition and embryo viability. To further investigate the PP501-caused high reproduction impairment, we investigated the Ygs biogenesis during oocyte maturation and the activation of the yolk degradation program at early development. We found that the Ygs biogenesis was deficient during oogenesis, as seen by flow cytometry, and that, although the PP501-silenced unviable eggs were fertilized, the Ygs acidification and acid phosphatase activity were affected, culminating in a full impairment of the yolk proteins degradation at early embryogenesis. Altogether we found that PP501 is required for the oocyte maturation and the activation of the yolk degradation, being, therefore, essential for this vector reproduction.
Background: Despite antiretroviral treatment efficacy, it does not lead to the complete eradication of HIV infection. In addition, HIV-1 latency reactivation is a major challenge towards cure efforts. Two strategies to cure HIV-1 infection, the “shock and kill” is based on the eradication of the HIV-1 from the patient, and the “block and lock". The “Block and Lock” methodology aims to control HIV-1 latency reactivation, promoting a functional cure. The KRAB fused CRISPR/dCas9 (pdCas9KRAB) system was previously produced to control cell transcription. Based on this construct we developed a CRISPR RNAs (sgRNAs), to guide the pdCas9KRAB up to five different sites in HIV-1 provirus sites to block HIV-1 latency reactivation. This process was mediated by phorbol esters and HDAC inhibitors.Results: We found five sites in the HIV-1 provirus genome (LTR1-LTR5) that minimize CRISPR off-targets and transduced them in the lymphoid and myeloid HIV-1 latency models. One of the five sgRNAs (LTR5) which binds specifically in the HIV-1 LTR NFκB binding site was able to promote a robust repression of reactivation pattern in a HIV-1 latency lymphoid model stimulated with Phorbol 12-Myristate 13-Acetate (PMA) and Ingenol B (IngB), both potent protein kinase C (PKC) stimulators. Reactivation with HDAC inhibitors, such as SAHA and Panobinostat, showed the same strong inhibition of reactivation. Additionally, we observed a reduction of 100 times in HIV-1 RNA molecules, when reactivated IngB in myeloid HIV-1 latently infected U1 cells.Conclusion: Taken together, our results show that the KRAB fused CRISPR/dCas9 system can robustly prevent the HIV-1 latency reactivation process, mediated by PMA or IngB and SAHA or Panobinostat, both in myeloid and lymphoid HIV-1 latency. In addition, we demonstrated that KRAB repressor protein is crucial to reactivation resistance phenotype, and we also have shown some useful hotspots sequences in HIV-1 LTR to design sgRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.