The increased rate of fetal malformation in diabetic pregnancy represents both a clinical problem and a research challenge. In recent years, experimental and clinical studies have given insight into the teratological mechanisms and generated suggestions for improved future treatment regimens. The teratological role of disturbances in the metabolism of inositol, prostaglandins, and reactive oxygen species has been particularly highlighted, and the beneficial effect of dietary addition of inositol, arachidonic acid and antioxidants has been elucidated in experimental work. Changes in gene expression and induction of apoptosis in embryos exposed to a diabetic environment have been investigated and assigned roles in the teratogenic processes. The diabetic environment appears to simultaneously induce alterations in several interrelated teratological pathways. The complex pathogenesis of diabetic embryopathy has started to unravel, and future research efforts will utilize both clinical intervention studies and experimental work that aim to characterize the human applicability and the cell biological components of the discovered teratological mechanisms.
An association between excess oxygen radical activity and disturbed embryogenesis in diabetic pregnancy has been suggested. In the present study, the protective capacity of vitamin E with different treatment regimens was investigated in early and late pregnancy of streptozotocin-induced diabetic rats. Daily gavaging of 0.2 g/kg or 0.8 g/kg of vitamin E exerted moderate protective effects. In contrast, treatment with a diet enriched with 2% (wt/wt) of vitamin E, yielding an approximate daily dosage of 2 g/kg of vitamin E, clearly restored both embryonic and fetal morphology. High-performance liquid chromatography measurement showed that maternal diabetes decreased embryonic content of vitamin E. When pregnant diabetic animals were supplemented with vitamin E, increased concentrations of the vitamin were found in maternal, embryonic, and fetal tissues. Thus, despite marked accumulation of vitamin E in maternal tissues, the compound apparently reached the conceptus. Thiobarbituric acid reactive substances (TBARS) were estimated as a measure of lipid peroxidation, and no changes were observed in maternal tissue, embryonic tissue, placenta, and fetal brain in the untreated diabetic group. In contrast, a fivefold increase of TBARS was found in fetal liver, a rise that was reduced with vitamin E treatment of the diabetic pregnant rats and completely normalized with 2% vitamin E in the diet. Congenital malformations caused by experimental diabetes can be prevented by antioxidants in vivo. These findings further corroborate the notion that an imbalance in the metabolism of free oxygen radicals is involved in the embryonic maldevelopment of diabetic pregnancy, and suggest a direction for prophylactic treatment in the future.
Maternal diabetes during pregnancy is associated with an increased rate of congenital malformations in the offspring. The exact molecular etiology of the disturbed embryogenesis is unknown, but an involvement of radical oxygen species in the teratological process has been suggested. Oxidative damage presupposes an imbalance between the activity of the free oxygen radicals and the antioxidant defence mechanisms on the cellular level. The aim of the present study was to investigate if maternal diabetes in vivo, or high glucose in vitro alters the expression of the free oxygen radical scavenging enzymes superoxide dismutase (CuZnSOD and MnSOD), catalase and glutathione peroxidase in rat embryos during late organogenesis. We studied offspring of normal and diabetic rats on gestational days 11 and 12, and also evaluated day-11 embryos after a 48 hour culture period in 10 mM or 50 mM glucose concentration. Both maternal diabetes and high glucose culture caused growth retardation and increased rate of congenital malformations in the embryos. The CuZnSOD and MnSOD enzymes were expressed on gestational day 11 and both CuZnSOD, MnSOD and catalase were expressed on day 12 with increased concentrations of MnSOD transcripts when challenged by a diabetic milieu. There was a good correlation between mRNA, protein, and activity levels, suggesting that the regulation of these enzymes occurs primarily at the pretranslational level. Maternal diabetes in vivo and high glucose concentration in vitro induced increased MnSOD expression, concomitant with increased total SOD activity, and a tentative decrease in catalase expression and activity in the embryos. These findings support the notion of enhanced oxidative stress in the embryo as an etiologic agent in diabetic teratogenesis.
The increased incidence of congenital malformations in diabetic pregnancy may be associated with an excess of free oxygen radicals in the embryo. We have previously blocked the dysmorphogenesis of rat embryos exposed to high glucose and beta-hydroxybutyrate concentrations in vitro by increasing the antioxidant capacity of the conceptus. In the present study, we attempted to diminish the teratogenic process in vivo in a rat model of diabetic pregnancy. Thus, pregnant diabetic and normal rats were fed either a standard diet or a diet enriched with 1% of the antioxidant butylated hydroxytoluene (BHT). The fetuses of the diabetic rats were smaller than the fetuses of the normal rats (body weight 2.70 g vs. 3.68 g) when the mothers were fed a standard diet. The BHT diet increased the fetal weight in the offspring of diabetic rats (3.17 g), with no change in fetuses of the normal rats (3.65 g). The placentas of diabetic rats were heavier than the placentas of normal rats; this difference was not present in the BHT-fed rats. The BHT treatment had no effect on the rate of resorptions, which was increased in the diabetic rats compared with the normal rats. In contrast, the increased rate of congenital malformations in the offspring of diabetic rats (19%), compared with that in the normal rats (0%), was markedly decreased by the BHT diet (2.3%). No malformations were found in the normal rats treated with BHT. These data support the notion that an excess of free oxygen radicals in the embryo contributes to the teratogenic process of diabetic pregnancy and, thus, suggest an area for future preventive therapeutic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.