One of the main objectives of almost all future (lepton) colliders is to measure the self-coupling of triple Higgs in the Standard Model. By elongating the Standard Model's scalar sector, using incipient Higgs doublet along with a quadratic (Higgs) potential should reveal many incipient features of the model and the possibility of the emergence of additional Higgs self-couplings. The self-coupling of the Higgs boson helps in reconstructing the scalar potential. The main objective of this paper is to extract Higgs self-coupling by numerically analyzing several scattering processes governed by two Higgs doublet models (2HDM). These scattering processes include various possible combinations of final states in the triple Higgs sector. The determination of production cross-section of scattering processes is carried out using two different scenarios, with and without polarization of incoming beam and is extended to a center of mass energy up to √ s = 3 T eV . The computation is carried out in Type-1 2HDM. Here we consider the case of exact alignment limit (s βα = 1) and masses of extra Higgs state are equal that is m H = m H 0 = m A 0 = m H ± . This choice is made to minimize the oblique parameters. The decays of the final state of each process are investigated to estimate the number of events at integrated luminosity of 1ab −1 and 3ab −1 .
One of the main objectives of almost all future (lepton) colliders is to measure the self-coupling of triple Higgs in the Standard Model. By elongating the Standard Model’s scalar sector, using incipient Higgs doublet along with a quadratic (Higgs) potential can reveal many incipient features of the model and the possibility of the emergence of additional Higgs self-couplings. The self-coupling of the Higgs boson helps in reconstructing the scalar potential. The main objective of this paper is to extract Higgs self-coupling by numerically analyzing several scattering processes governed by two Higgs doublet models (2HDM). These scattering processes include various possible combinations of final states in the triple Higgs sector. The determination of production cross-section of scattering processes is carried out using two different scenarios, one with and other without polarization of incoming beam, and is extended to a center of mass energy up to s = 3 TeV . The computation is carried out in type-1 2HDM. Here, we consider the case of exact alignment limit ( s β α =1) and masses of extra Higgs states are equal, that is, m H = m H 0 = m A 0 = m H ± . This choice minimizes the oblique parameters. The decays of the final state of each process are investigated to estimate the number of events at an integrated luminosity of 1 a b − 1 and 3 a b − 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.