We present a deep convolutional neural network for breast cancer screening exam classification, trained and evaluated on over 200,000 exams (over 1,000,000 images). Our network achieves an AUC of 0.895 in predicting whether there is a cancer in the breast, when tested on the screening population. We attribute the high accuracy of our model to a two-stage training procedure, which allows us to use a very high-capacity patch-level network to learn from pixel-level labels alongside a network learning from macroscopic breast-level labels. To validate our model, we conducted a reader study with 14 readers, each reading 720 screening mammogram exams, and find our model to be as accurate as experienced radiologists when presented with the same data. Finally, we show that a hybrid model, averaging probability of malignancy predicted by a radiologist with a prediction of our neural network, is more accurate than either of the two separately. To better understand our results, we conduct a thorough analysis of our network's performance on different subpopulations of the screening population, model design, training procedure, errors, and properties of its internal representations.deep learning | deep convolutional neural networks | breast cancer screening | mammography B reast cancer is the second leading cancer-related cause of death among women in the US. In 2014, over 39 million screening and diagnostic mammography exams were performed in the US. It is estimated that in 2015 232,000 women were diagnosed with breast cancer and approximately 40,000 died from it (1). Although mammography is the only imaging test that has reduced breast cancer mortality (2-4), there has been discussion regarding the potential harms of screening, including false positive recalls and associated false positive biopsies. The vast majority of the 10-15% of women asked to return following an inconclusive screening mammogram undergo another mammogram and/or ultrasound for clarification. After the additional imaging exams, many of these findings are determined as benign and only 10-20% are recommended to undergo a needle biopsy for further work-up. Among these, only 20-40% yield a diagnosis of cancer (5). Evidently, there is an unmet need to shift the balance of routine breast cancer screening towards more benefit and less harm.Traditional computer-aided detection (CAD) in mammography is routinely used by radiologists to assist with image interpretation, despite multicenter studies showing these CAD programs do not improve their diagnostic performance (6).These CAD programs typically use handcrafted features to mark sites on a mammogram that appear distinct from normal tissue structures. The radiologist decides whether to recall these findings, determining clinical significance and actionability. Recent developments in deep learning (7)-in particular, deep convolutional neural networks (CNNs) (8-12)-open possibilities for creating a new generation of CAD-like tools.This paper makes several contributions. Primarily, we train and evaluate a set of stro...
Radiology practices are facing unprecedented challenges not only in how they are providing care to patients but also in how to continue to educate the next generation of radiologists. Although the priority is on providing timely and high-quality imaging to patients, especially those infected with coronavirus disease 2019 (COVID-19), there is still a need to maintain our educational mission. For many institutions, remote learning has become the solution, although in reality, many radiology educators lack the expertise and experience using these technologies effectively.
Advances in deep learning for natural images have prompted a surge of interest in applying similar techniques to medical images. The majority of the initial attempts focused on replacing the input of a deep convolutional neural network with a medical image, which does not take into consideration the fundamental differences between these two types of images. Specifically, fine details are necessary for detection in medical images, unlike in natural images where coarse structures matter most. This difference makes it inadequate to use the existing network architectures developed for natural images, because they work on heavily downscaled images to reduce the memory requirements. This hides details necessary to make accurate predictions. Additionally, a single exam in medical imaging often comes with a set of views which must be fused in order to reach a correct conclusion. In our work, we propose to use a multi-view deep convolutional neural network that handles a set of high-resolution medical images. We evaluate it on largescale mammography-based breast cancer screening (BI-RADS prediction) using 886,000 images. We focus on investigating the impact of the training set size and image size on the prediction accuracy. Our results highlight that performance increases with the size of training set, and that the best performance can only be achieved using the original resolution. In the reader study, performed on a random subset of the test set, we confirmed the efficacy of our model, which achieved performance comparable to a committee of radiologists when presented with the same data.
Studies have aimed to assess prognostic factors to characterize its risk of invasive potential; however, there still remains a lack of uniformity in workup and treatment. We summarize current knowledge of DCIS and the ongoing controversies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.