The Mandapeta-Malleswaram field in India comprises Triassic-Jurassic age sands found at 4000m– 4500m depth, where reservoir pressure ranges 6,000 psi to 9,500psi with static temperature up to 340°F. This tectonically active basin with strike slip stress regime causes a heterogeneous distribution of in-situ stress which complicates the design and execution of effective hydraulic fracturing treatments. Previous attempts at fracturing from 2013 to 2017 were not successful and geomechanics inputs were different from actual values. This paper describes the lifecycle of a production enhancement project, from construction of a geomechanics-enabled mechanical earth model (MEM) to the successful design and execution of fracturing jobs on nine wells increasing proppant placement by 250% compared to previous hydraulic fracturing campaign and achieving 730% incremental gain in gas production compared to pre- fracturing production. Challenges like fracture modeling in tectonically stressed formations, issues of proppant admittance, and complicated fracture plane growth in highly deviated wells (>65°) were overcome by Geomechanical modeling. The modeling incorporated advanced 3D anisotropy measurements, providing better estimation of Young's modulus, Poisson's ratio, and horizontal stresses, resulting in realistic estimation of closure and breakdown pressure. Fault effects were modeled and taken into consideration for perforation depth selection and estimation of pumping pressure with model update based on extensive Minifrac injections and analysis. This study describes the results of injection tests (step rate, pump in-flowback, and calibration injection tests) carried out in the field addressing specific challenges in each well. Pre frac diagnostic injection and decline analysis was used to calibrate the MEM and tailor the design for every well. Proper job preparation for well completions and extensive stability testing involving a borate-based fluid system has reduced the screen out risk and enabled successful fracture placement. Effective pressure management on the job eliminated the problem with frequent screen outs and led to successful execution of all nine jobs while increasing the average job size from 30 t to ~150 t of proppant per stage. From this project, a practical guide to address issues of multiple complexities occurring simultaneously in a reservoir, such as the presence of tectonic stress, fracture misalignment, fissure mitigation, and high tortuosity was developed for future application in tectonically complex fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.