The demand for automatic detection of Novel Coronavirus or COVID-19 is increasing across the globe. The exponential rise in cases burdens healthcare facilities, and a vast amount of multimedia healthcare data is being explored to find a solution. This study presents a practical solution to detect COVID-19 from chest X-rays while distinguishing those from normal and impacted by Viral Pneumonia via Deep Convolution Neural Networks (CNN). In this study, three pre-trained CNN models (EfficientNetB0, VGG16, and InceptionV3) are evaluated through transfer learning. The rationale for selecting these specific models is their balance of accuracy and efficiency with fewer parameters suitable for mobile applications. The dataset used for the study is publicly available and compiled from different sources. This study uses deep learning techniques and performance metrics (accuracy, recall, specificity, precision, and F1 scores). The results show that the proposed approach produced a high-quality model, with an overall accuracy of 92.93%, COVID-19, a sensitivity of 94.79%. The work indicates a definite possibility to implement computer vision design to enable effective detection and screening measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.