We consider the problem of recovering fusion frame sparse signals from incomplete measurements. These signals are composed of a small number of nonzero blocks taken from a family of subspaces. First, we show that, by using a-priori knowledge of a coherence parameter associated with the angles between the subspaces, one can uniformly recover fusion frame sparse signals with a significantly reduced number of vector-valued (sub-)Gaussian measurements via mixed ℓ 1 /ℓ 2 -minimization. We prove this by establishing an appropriate version of the restricted isometry property. Our result complements previous nonuniform recovery results in this context, and provides stronger stability guarantees for noisy measurements and approximately sparse signals. Second, we determine the minimal number of scalar-valued measurements needed to uniformly recover all fusion frame sparse signals via mixed ℓ 1 /ℓ 2 -minimization. This bound is achieved by scalar-valued subgaussian measurements. In particular, our result shows that the number of scalar-valued subgaussian measurements cannot be further reduced using knowledge of the coherence parameter. As a special case it implies that the best known uniform recovery result for block sparse signals using subgaussian measurements is optimal.
We address the following question: is it possible to reconstruct the geometry of an unknown environment using sparse and incomplete depth measurements? This problem is relevant for a resource-constrained robot that has to navigate and map an environment, but does not have enough on-board power or payload to carry a traditional depth sensor (e.g., a 3D lidar) and can only acquire few (point-wise) depth measurements. In general, reconstruction from incomplete data is not possible, but when the robot operates in man-made environments, the depth exhibits some regularity (e.g., many planar surfaces with few edges); we leverage this regularity to infer depth from incomplete measurements. Our formulation bridges robotic perception with the compressive sensing literature in signal processing. We exploit this connection to provide formal results on exact depth recovery in 2D and 3D problems. Taking advantage of our specific sensing modality, we also prove novel and more powerful results to completely characterize the geometry of the signals that we can reconstruct. Our results directly translate to practical algorithms for depth reconstruction; these algorithms are simple (they reduce to solving a linear program), and robust to noise. We test our algorithms on real and simulated data, and show that they enable accurate depth reconstruction from a handful of measurements, and perform well even when the assumption of structured environment is violated.
We consider the case in which a robot has to navigate in an unknown environment but does not have enough on-board power or payload to carry a traditional depth sensor (e.g., a 3D lidar) and thus can only acquire a few (point-wise) depth measurements. We address the following question: is it possible to reconstruct the geometry of an unknown environment using sparse and incomplete depth measurements? Reconstruction from incomplete data is not possible in general, but when the robot operates in man-made environments, the depth exhibits some regularity (e.g., many planar surfaces with only a few edges); we leverage this regularity to infer depth from a small number of measurements. Our first contribution is a formulation of the depth reconstruction problem that bridges robot perception with the compressive sensing literature in signal processing. The second contribution includes a set of formal results that ascertain the exactness and stability of the depth reconstruction in 2D and 3D problems, and completely characterize the geometry of the profiles that we can reconstruct. Our third contribution is a set of practical algorithms for depth reconstruction: our formulation directly translates into algorithms for depth estimation based on convex programming. In real-world problems, these convex programs are very large and general-purpose solvers are relatively slow. For this reason, we discuss ad-hoc solvers that enable fast depth reconstruction in real problems. The last contribution is an extensive experimental evaluation in 2D and 3D problems, including Monte Carlo runs on simulated instances and testing on multiple real datasets. Empirical results confirm that the proposed approach ensures accurate depth reconstruction, outperforms interpolation-based strategies, and performs well even when the assumption of structured environment is violated. SUPPLEMENTAL MATERIAL• Video demonstrations: https://youtu.be/vE56akCGeJQ• Source code: https://github.com/sparse-depth-sensing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.