Background: Reliable photomask metrology is required to reduce the risk of yield loss in the semiconductor manufacturing process as well as for the research on absorber materials. Actinic pattern inspection (API) of EUV reticles is a challenging problem to tackle with a conventional approach. For this reason, we developed RESCAN, an API platform based on coherent diffraction imaging. Aim: We want to verify the sensitivity of our platform to absorber and phase defects. Approach: We designed and manufactured two EUV mask samples with absorber and phase defects, and we inspected them with RESCAN in die-to-database mode. Results: We reconstructed an image of an array of programmed absorber defects, and we created a defect map of our sample. We inspected two programmed phase defect samples with buried structures of 3.5 and 7.8 nm height. Conclusions: We verified that RESCAN, in its current configuration, can detect absorber defects in random patterns and buried (phase) defects down to 50 × 50 nm 2 .
Emerging processor architectures such as GPUs and Intel MICs provide a huge performance potential for high performance computing. However developing software that uses these hardware accelerators introduces additional challenges for the developer. These challenges may include exposing increased parallelism, handling different hardware designs, and using multiple development frameworks in order to utilise devices from different vendors.The Dynamic Kernel Scheduler (DKS) is being developed in order to provide a software layer between the host application and different hardware accelerators. DKS handles the communication between the host and the device, schedules task execution, and provides a library of built-in algorithms. Algorithms available in the DKS library will be written in CUDA, OpenCL, and OpenMP. Depending on the available hardware, the DKS can select the appropriate implementation of the algorithm.The first DKS version was created using CUDA for the Nvidia GPUs and OpenMP for Intel MIC. DKS was further integrated into OPAL (Object-oriented Parallel Accelerator Library) in order to speed up a parallel FFT based Poisson solver and Monte Carlo simulations for particle matter interaction used for proton therapy degrader modelling. DKS was also used together with Minuit2 for parameter fitting, where χ 2 and max-log-likelihood functions were offloaded to the hardware accelerator. The concepts of the DKS, first results, and plans for the future will be shown in this paper.
This article presents a hardware architecture independent implementation of an adaptive mesh refinement Poisson solver that is integrated into the electrostatic Particle-In-Cell beam dynamics code OPAL. The Poisson solver is solely based on second generation Trilinos packages to ensure the desired hardware portability. Based on the massively parallel framework AMReX, formerly known as BoxLib, the new adaptive mesh refinement interface provides several refinement policies in order to enable precise large-scale neighbouring bunch simulations in high intensity cyclotrons. The solver is validated with a built-in multigrid solver of AMReX and a test problem with analytical solution. The parallel scalability is presented as well as an example of a neighbouring bunch simulation that covers the scale of the later anticipated physics simulation.
Reliable photomask metrology is required to reduce the risk of yield loss in the semiconductor manufacturing process. Actinic pattern inspection (API) of EUV reticles is a challenging problem to tackle with a conventional approach. For this reason we developed an API platform based on coherent diffraction imaging. Aim:We want to verify the sensitivity of our platform to absorber and phase defects. Approach:We designed and manufactured two EUV mask samples with absorber and phase defects and we inspected them with RESCAN in die-to-database mode. Results:We reconstructed an image of an array of programmed absorber defects and we created a defect map of our sample. We inspected two programmed phase defect samples with buried structures of 3.5 nm and 7.8 nm height. Conclusions:We verified that RESCAN in its current configuration can detect absorber defects in random patterns and buried (phase) defects down to 50 × 50 nm 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.