In trains with tread brakes, the coefficient of friction between the brake block and the railway wheel determines the stopping distance. The blocks have traditionally been manufactured from cast iron. Although these blocks have good braking capacity, their use is often restricted due to the squealing noise they emit. Tests of alternative composite block materials have been successful under summer conditions; however, in regions with snowy winters the use of such materials has been limited due to problems with braking capacity under snowy conditions. This research aims to develop a laboratory-scale test methodology for evaluating the braking capacity of tread brake materials under winter and snowy conditions. A pin-on-disc machine placed in a climate chamber was used for testing, and a block of standard cast iron was compared with blocks of standard composite materials. The results indicated that the blocks of standard composite materials generate a much smoother surface on the counter wheel and a significantly lower friction coefficient under snowy conditions. A second test series evaluated blocks of alternative composite materials, and a candidate material with low noise and a sufficiently high sliding friction coefficient was selected for further study. A third test series examining geometrical changes in the contact surface in terms of milled parallel tracks was performed; it revealed that the braking capacity under winter conditions can be increased by milling actions if the parallel tracks are properly oriented-in this case, at an angle of 45 to the sliding direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.