Global temperatures are rising at an unprecedented rate, but environmental responses are often difficult to recognize and quantify. Long-term observations of plant phenology, the annually recurring sequence of plant developmental stages, can provide sensitive measures of climate change and important information for ecosystem services. Here, we present 419 354 recordings of the first flowering date from 406 plant species in the UK between 1753 and 2019 CE. Community-wide first flowering advanced by almost one month on average when comparing all observations before and after 1986 ( p < 0.0001). The mean first flowering time is 6 days earlier in southern than northern sites, 5 days earlier under urban than rural settings, and 1 day earlier at lower than higher elevations. Compared to trees and shrubs, the largest lifeform-specific phenological shift of 32 days is found in herbs, which are generally characterized by fast turnover rates and potentially high levels of genetic adaptation. Correlated with January–April maximum temperatures at −0.81 from 1952–2019 ( p < 0.0001), the observed trends (5.4 days per decade) and extremes (66 days between the earliest and latest annual mean) in the UK's first flowering dataset can affect the functioning and productivity of ecosystems and agriculture.
Shrub recruitment, a key component of vegetation dynamics beyond forests, is a highly sensitive indicator of climate and environmental change. Warming-induced tipping points in Arctic and alpine treeless ecosystems are, however, little understood. Here, we compare two long-term recruitment datasets of 2,770 shrubs from coastal East Greenland and from the Tibetan Plateau against atmospheric circulation patterns between 1871 and 2010 Common Era. Increasing rates of shrub recruitment since 1871 reached critical tipping points in the 1930s and 1960s on the Tibetan Plateau and in East Greenland, respectively. A recent decline in shrub recruitment in both datasets was likely related to warmer and drier climates, with a stronger May to July El Niño Southern Oscillation over the Tibetan Plateau and a stronger June to July Atlantic Multidecadal Oscillation over Greenland. Exceeding the thermal optimum of shrub recruitment, the recent warming trend may cause soil moisture deficit. Our findings suggest that changes in atmospheric circulation explain regional climate dynamics and associated response patterns in Arctic and alpine shrub communities, knowledge that should be considered to protect vulnerable high-elevation and high-latitude ecosystems from the cascading effects of anthropogenic warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.