A B S T R A C T Stress corrosion, in the form of chemically assisted crack growth, in polycarbonate is examined with focus on crack branching characteristics. Cracks with finite width are observed; this is to be expected for dissolution driven cracking. The cracks branched repeatedly and crack widths before and after branching are measured. Both symmetric and asymmetric branching is found. The dissolution rate is assumed to be a linear function of the strain along the crack surface. In the literature, it is proposed that the crack width is proportional to the square of the mode I stress intensity factor. Energy considerations lead to that the sum of branch widths must equal the width of the unbranched crack. The results from this study correspond fairly well with this assumption. The branching angle is found to be 32 • ± 12 • , which is in line with results for sharp cracks reported in the literature. The mean growth direction of the branches is found to deviate slightly from the expected straight. No significant correlation between angles and crack widths is found. The scatter in results is mainly addressed to the inherent perturbation sensitivity of stress corrosion cracking. Also numerically simulations of crack branching is performed. These results show promising agreement with the experiments.
a b s t r a c tThe initial stages of stress corrosion on an amorphous polymer is investigated. This is done by exposing stressed specimens of polycarbonate to an acetone and water solution. The surface develops two distinct features of degradation that appear on different length scales when subjected to tensile stress. Small pits form on the surface and make it rough. These pits are in the order of micrometers, and are found to be randomly distributed. They occur even without load and seem to slightly increase in number with increasing stress. In the millimeter domain, visible to the bare eye, surface cracks are formed transverse to the direction of loading. The occurrence of cracks is seen to have a positive stress threshold value, exceeding which, a linear increase of number of cracks with stress is found. The manners in which the cracks grow and coalesce on the surface are examined. It is seen that they do not meet crack tip to crack tip. Instead, they avoid each other initially and coalesce crack tip to crack side. The results are discussed in the light of mechanical considerations. A stress analysis for a few configurations of meeting cracks supports the experimental observations. With assumptions of stress corrosion crack growth and coalescence, a simulation of cracks growing from randomly distributed initiation sites is performed. Similar crack patterns as obtained in the experiments are found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.