Plants can metabolize sulfate by two pathways, which branch at the level of adenosine 59-phosphosulfate (APS). APS can be reduced to sulfide and incorporated into Cys in the primary sulfate assimilation pathway or phosphorylated by APS kinase to 39-phosphoadenosine 59-phosphosulfate, which is the activated sulfate form for sulfation reactions. To assess to what extent APS kinase regulates accumulation of sulfated compounds, we analyzed the corresponding gene family in Arabidopsis thaliana. Analysis of T-DNA insertion knockout lines for each of the four isoforms did not reveal any phenotypical alterations. However, when all six combinations of double mutants were compared, the apk1 apk2 plants were significantly smaller than wild-type plants. The levels of glucosinolates, a major class of sulfated secondary metabolites, and the sulfated 12-hydroxyjasmonate were reduced approximately fivefold in apk1 apk2 plants. Although auxin levels were increased in the apk1 apk2 mutants, as is the case for most plants with compromised glucosinolate synthesis, typical high auxin phenotypes were not observed. The reduction in glucosinolates resulted in increased transcript levels for genes involved in glucosinolate biosynthesis and accumulation of desulfated precursors. It also led to great alterations in sulfur metabolism: the levels of sulfate and thiols increased in the apk1 apk2 plants. The data indicate that the APK1 and APK2 isoforms of APS kinase play a major role in the synthesis of secondary sulfated metabolites and are required for normal growth rates.
In plants, algae, and cyanobacteria, photosystem II (PSII) catalyzes the light-driven oxidation of water. The oxygen-evolving complex of PSII is a Mn 4 CaO 5 cluster embedded in a well-defined protein environment in the thylakoid membrane. However, transport of manganese and calcium into the thylakoid lumen remains poorly understood. Here, we show that Arabidopsis thaliana PHOTOSYNTHESIS AFFECTED MUTANT71 (PAM71) is an integral thylakoid membrane protein involved in Mn 2+ and Ca 2+ homeostasis in chloroplasts. This protein is required for normal operation of the oxygen-evolving complex (as evidenced by oxygen evolution rates) and for manganese incorporation. Manganese binding to PSII was severely reduced in pam71 thylakoids, particularly in PSII supercomplexes. In cation partitioning assays with intact chloroplasts, Mn 2+ and Ca 2+ ions were differently sequestered in pam71, with Ca 2+ enriched in pam71 thylakoids relative to the wild type. The changes in Ca 2+ homeostasis were accompanied by an increased contribution of the transmembrane electrical potential to the proton motive force across the thylakoid membrane. PSII activity in pam71 plants and the corresponding Chlamydomonas reinhardtii mutant cgld1 was restored by supplementation with Mn 2+ , but not Ca 2+ . Furthermore, PAM71 suppressed the Mn 2+ -sensitive phenotype of the yeast mutant Dpmr1. Therefore, PAM71 presumably functions in Mn 2+ uptake into thylakoids to ensure optimal PSII performance.
The Arabidopsis chlorophyll a / b binding protein ( CAB ) gene underexpressed 1 ( cue1 ) mutant underexpresses light-regulated nuclear genes encoding chloroplast-localized proteins. cue1 also exhibits mesophyll-specific chloroplast and cellular defects, resulting in reticulate leaves. Both the gene underexpression and the leaf cell morphology phenotypes are dependent on light intensity. In this study, we determine that CUE1 encodes the plastid inner envelope phosphoenolpyruvate/phosphate translocator (PPT) and define amino acid residues that are critical for translocator function. The biosynthesis of aromatics is compromised in cue1 , and the reticulate phenotype can be rescued by feeding aromatic amino acids. Determining that CUE1 encodes PPT indicates the in vivo role of the translocator in metabolic partitioning and reveals a mesophyll cell-specific requirement for the translocator in Arabidopsis leaves. The nuclear gene expression defects in cue1 suggest that a light intensity-dependent interorganellar signal is modulated through metabolites dependent on a plastid supply of phosphoenolpyruvate.
Aliphatic glucosinolate biosynthesis is highly compartmentalized, requiring import of 2-keto acids or amino acids into chloroplasts for side chain elongation and export of the resulting compounds into the cytosol for conversion into glucosinolate. Aliphatic glucosinolate biosynthesis in Arabidopsis thaliana is regulated by three R2R3-MYB transcription factors, the major player being High Aliphatic Glucosinolate 1 (HAG1/MYB28). Here, we show that BAT5, which belongs to the putative bile acid transporter family, is the only member of this family that is transactivated by HAG1/MYB28, HAG2/ MYB76, and HAG3/MYB29. Furthermore, two isopropylmalate isomerases genes, IPMI1 and IPMI2, and the isopropylmalate dehydrogenase gene, IPMDH1, were identified as targets of HAG1/MYB28 and the corresponding proteins localized to plastids, suggesting a role in plastidic chain elongation reactions. The BAT proteins also localized to plastids; however, only mutants defective in BAT5 function contained strongly reduced levels of aliphatic glucosinolates. The bat5 mutant chemotype was rescued by induced overexpression of BAT5. Feeding experiments using 2-keto acids and amino acids of different chain length suggest that BAT5 is a plastidic transporter of (chain-elongated) 2-keto acids. Mechanical stimuli and methyl jasmonate transiently induced BAT5 expression in inflorescences and leaves. Thus, BAT5 was identified as the first transporter component of the aliphatic glucosinolate biosynthetic pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.