The key challenge in developing a physico-chemical model is the model parameterization. The paper presents a strategic model parameterization procedure, parameter values, and a developed model that allows simulating electrochemical and thermal behavior of a commercial lithium-ion battery with high accuracy. Steps taken are the analysis of geometry details by opening a battery cell under argon atmosphere, building upon reference data of similar material compositions, incorporating cell balancing by a quasi-open-circuit-voltage experiment, and adapting the battery models reaction kinetics behavior by comparing experiment and simulation of an electrochemical impedance spectroscopy and hybrid pulse power characterization. The electrochemical-thermal coupled model is established based on COMSOL Multiphysics® platform (Stockholm, Sweden) and validated via experimental methods. The parameterized model was adopted to analyze the heat dissipation sources based on the internal states of the battery at different operation modes. Simulation in the field of thermal management for lithium-ion batteries highly depends on state of charge-related thermal issues of the incorporated cell composition. The electrode balancing is an essential step to be performed in order to address the internal battery states realistically. The individual contribution of the cell components heat dissipation has significant influence on the temperature distribution pattern based on the kinetic and thermodynamic properties.
To draw reliable conclusions about the thermal characteristic of or a preferential cooling strategy for a lithium–ion battery, the correct set of thermal input parameters and a detailed battery layout is crucial. In our previous work, an electrochemical model for a commercially-available, 40 Ah prismatic lithium–ion battery was validated under heuristic temperature dependence. In this work the validated electrochemical model is coupled to a spatially resolved, three dimensional (3D), thermal model of the same battery to evaluate the thermal characteristics, i.e., thermal barriers and preferential heat rejection patterns, within common environment layouts. We discuss to which extent the knowledge of the batteries’ interior layout can be constructively used for the design of an exterior battery thermal management. It is found from the study results that: (1) Increasing the current rate without considering an increased heat removal flux at natural convection at higher temperatures will lead to increased model deviations; (2) Centralized fan air-cooling within a climate chamber in a multi cell test arrangement can lead to significantly different thermal characteristics at each battery cell; (3) Increasing the interfacial surface area, at which preferential battery interior and exterior heat rejection match, can significantly lower the temperature rise and inhomogeneity within the electrode stack and increase the batteries’ lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.