The objective of this study was to evaluate various physical and mechanical properties of experimental particleboard panels made from Asian giant bamboo (Dendrocalamus asper). Single layer panels having a density level of 0.75 g/cm3 from coarse and fine particles were used within the scope of this study. Thickness swelling, water absorption, surface roughness, and wettability characteristics of the samples were tested as physical properties while bending, internal bond strength, and screw withdrawal strength of the panels were considered for their mechanical properties. Resistance of the panels against termite and fungus were also determined. Based on the findings in the work both physical and mechanical properties of the panels made from coarse particles resulted in higher values than those made from fine particles with the exception of their internal bond strength. It appears that using fine particles in the panels enhanced their overall surface quality as well as wettability. Regarding biological deterioration of the samples, those made with coarse particles had better resistance. It seems that giant bamboo as a non-wood lignocellulosic species would have potential to be used as raw material to the manufacture value added particleboard with accepted characteristics.
Rain tree (Samanea saman) is a dominant species commonly planted as a shade tree in urban landscapes in the tropics, including in Indonesia. This species is also targeted for routine inspection and monitoring within tree management systems. Management should particularly focus on tree health through assessment of tree growth conditions as well as tree stability. However, baseline information on the relationships of many key characteristics for the rain tree (e.g., growth, morphometrics, and biomechanics) is lacking. Therefore, an investigation was carried out to determine the relationship of morphometric parameters to tree growth, which included use of an acoustic tool to assess the elasticity of the tree stem. Fifty rain trees were selected for data collection and evaluated using stress wave velocity tools and visual morphometrics assessment. The results demonstrated that, in general, the trees had good vigor and stability. Statistical analysis showed a strong relationship between tree growth parameters and selected morphometric characteristics. The use of a nondestructive acoustic-based instrument enabled determining the modulus of elasticity, which provided equivalent results with the elasticity value obtained through a common method for determining tree stability. Only live crown ratio and tree slenderness parameters had a relationship with the dynamic modulus of elasticity. These results offer a means of measurement that is simpler, less expensive, and faster than current methods, although further testing is needed for different tree species and growth sites.
To effectively reduce illegal timber trade, law enforcers need forensic methods to independently verify claims of wood origin. Multi-element analysis of traded plant material has the potential to be used to trace the origin of commodities, but for timber it has not been tested at relevant large scales. Here we put this method to the test, by evaluating its tracing accuracy for three economically important tropical timbers: Azobé and Tali in Central Africa (22 sites) and Red Meranti on Borneo (9 sites). Wood samples from 991 trees were measured using Inductively Coupled Plasma Mass Spectrometry and element concentrations were analysed to chemically group similar sites (clustering) and assess accuracy of tracing samples to their origin (Random Forest models). For all three timbers, we found distinct spatial differences in chemical composition. In Central Africa, tracing accuracy was 86%–98% for regional clusters of chemically similar sites, with accuracy depending on the tracing question. These clusters were 50–800 km apart and tracing accuracy was highest when combining the two timbers. Tracing accuracy of Red Meranti on Borneo was 88% at the site level. This high accuracy at a small scale may be related to the short distances at which differences in soil type occur on Borneo. A blind sample analysis of 46 African timber samples correctly identified the origin of 70%–72% of the samples, but failed to exclude 70% of the samples obtained from different species or outside the study area. Overall, these results illustrate a high potential for multi-element analysis to be developed into a timber tracing tool which can identify origin for multiple species and can do so at a within-country scale. To reach this potential, reference databases need to cover wider geographic areas and represent more timbers.
The pin-penetration device is a minimally destructive instrument that is widely used to estimate the physical properties of wood, e.g., density, with advantages such as reduced testing times, low costs, and fewer defects induced in the wood being tested. In this study, such a device was used on 25 Indonesian hardwood species with a strength class (SC) distribution from SC II to IV (according to the Indonesian classification of wood SCs). Tests were conducted on three different orthogonal planes, i.e., cross-sectional, radial, and tangential planes. The wood density ranged from 0.28 to 0.88 g/cm3, and the specific gravity was 0.25 to 0.76. The cross-sectional plane penetration depth of the wood was significantly greater than that of either the radial or tangential plane, whereas the pin penetration values of the radial and tangential planes were not significantly different. A prediction model for predicting the density and specific gravity of wood via pin penetration showed a significant regression. Thus, the use of a pin-penetration device was found to be suitable for estimating wood density and specific gravity in a range of SCs of tropical wood species regardless of species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.