The availability of cheap depth range sensors has increased the use of an enormous amount of 3D information in hand-held and head-mounted devices. This has directed a large research community to optimize point cloud storage requirements by preserving the original structure of data with an acceptable attenuation rate. Point cloud compression algorithms were developed to occupy less storage space by focusing on features such as color, texture, and geometric information. In this work, we propose a novel lossy point cloud compression and decompression algorithm that optimizes storage space requirements by preserving geometric information of the scene. Segmentation is performed by using a region growing segmentation algorithm. The points under the boundary of the surfaces are discarded that can be recovered through the polynomial equations of degree one in the decompression phase. We have compared the proposed technique with existing techniques using publicly available datasets for indoor architectural scenes. The results show that the proposed novel technique outperformed all the techniques for compression rate and RMSE within an acceptable time scale.
Today Pakistan is facing numerous challenges for the interconnection of local energy resources and for balanced energy policies. Data Science, Big Data, Artificial Intelligence (AI), IoT and Cloud computing draws our focus towards controlling energy crises in terms of smart energy generation, consumption and to overcome causes of energy crises. To make a conclusion valuable we have to extract significant value from a large amount of data that's why data management plays a significant role. This Paper presents a review of energy sectors, energy resources, energy crises in Pakistan. It also presents the possible solution of energy crises with the help of data science application and the involvement of Big Data, Cloud computing, IoT and AI
The presence of 3D sensors in hand-held or head-mounted smart devices has motivated many researchers around the globe to devise algorithms to manage 3D point cloud data efficiently and economically. This paper presents a novel lossy compression technique to compress and decompress 3D point cloud data that will save storage space on smart devices as well as minimize the use of bandwidth when transferred over the network. The idea presented in this research exploits geometric information of the scene by using quadric surface representation of the point cloud. A region of a point cloud can be represented by the coefficients of quadric surface when the boundary conditions are known. Thus, a set of quadric surface coefficients and their associated boundary conditions are stored as a compressed point cloud and used to decompress. An added advantage of proposed technique is its flexibility to decompress the cloud as a dense or a course cloud. We compared our technique with state-of-the-art 3D lossless and lossy compression techniques on a number of standard publicly available datasets with varying the structure complexities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.