We show that a near-field scanning thermal microscope, which essentially
detects the local density of states of the thermally excited electromagnetic
modes at nanometer distances from some material, can be employed for nanoscale
imaging of structures on that material's surface. This finding is explained
theoretically by an approach which treats the surface structure perturbatively
We report on the design, characterization, and performance of a near-field scanning thermal microscope capable to detect thermal heat currents mediated by evanescent thermal electromagnetic fields close to the surface of a sample. The instrument operates in ultrahigh vacuum and retains its scanning tunneling microscope functionality, so that its miniature, micropipette-based thermocouple sensor can be positioned with high accuracy. Heat currents on the order of 10(-7) W are registered in z spectroscopy at distances from the sample ranging from 1 to about 30 nm. In addition, the device provides detailed thermographic images of a sample's surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.