Daily temperature measurements from six meteorological stations along the coast and fjords of western Spitsbergen have been digitized and quality controlled in a Norwegian, Russian and Polish collaboration. Complete daily data series have been reconstructed back to 1948 for all of the stations. One of the station's monthly temperature series has previously been extended back to 1898 and is included in this study. The long-term series show large temperature variability on western Spitsbergen with colder periods in the 1910s and 1960s and warmer periods in the 1930s, 1950s and in the 21st century. The most recent years are the warmest ones in the instrumental records. There is a positive and statistically significant trend in the annual times series for all of the stations; however, the strongest warming is seen in winter and spring. For the period 1979Á2015, the linear trends range from 1.0 to 1.38C/decade for the annual series and from 2.0 to 2.38C/decade in winter. Threshold statistics demonstrate a decrease in the number of cold days per year and an increase in the number of warm days. A decreasing inter-annual variability is observed. In winter, spring and autumn, the stations in the northernmost areas of west Spitsbergen and in the innermost parts of Isfjorden are the coldest ones. In summer, however, the southernmost station is the coldest one. To access the supplementary material for this article, please see the supplementary files under Article Tools, online.
The article describes an optical response of metastructure consisted of two optically coupled resonant subwavelength rectangular -profile diffraction gratings, between which a layer of optically transparent dielectric was placed. The features of optical resonance transmittance and reflectance for optical PT-symmetry mode was numerical investigated and some advantages of using optical PT-symmetry for resonance transmittance (reflectance) improving was demonstrated. The spectral characteristics of the metastructure change when the pumping level changes and when the system switches from the optical parity-time-symmetry mode to the broken parity-time-symmetry mode were analyzed too.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.