The economy is a benchmark to determine the extent of the development of a country. Indonesia, which is now a developing country, is ranked 5th as the poorest country in Southeast Asia. Of course, the government must pay attention because until now, poverty has become one of Indonesia's main problems. Ending poverty everywhere and in all its forms is goal 01 of the Sustainable Development Goals (SDGs) program. One of the efforts that can be done is by planning as part of the implementation of the target, namely eliminating poverty and appropriate social protection for all levels of society so that the SDGs are achieved. Therefore, it is important to do a spatial analysis by making a model of poverty estimation in Indonesia and grouping to identify areas in Indonesia that have the highest poverty mission. The clustering method used in this grouping is Self Organizing Map (SOM). In this study, Spatial Autoregressive (SAR) analysis was used to create a predictive model. This is because poverty is very likely to have a spatial influence or be influenced by location to other areas in the vicinity. The results of the SAR model that can be formed are . Furthermore, the region with the highest mission is grouped using the Self Organizing Map (SOM) clustering based on variables that significantly affect the amount of poverty in Indonesia. From the results of the analysis obtained four clusters, each of which has its characteristics to classify 34 provinces in Indonesia. The clusters formed include cluster 1 consisting of 17 provinces, cluster 2 consisting of 9 provinces, cluster 3 consisting of 1 province, and cluster 4 consisting of 7 provinces.
Dampak dari pandemi COVID-19 sangat terasa terutama dalam aspek pendidikan. Model pembelajaran yang dulu tatap muka sekarang berubah menjadi pembelajaran secara daring. Hal ini berpengaruh terhadap lembaga pendidikan non formal salah satunya yaitu Nusagama Grup yang mengalami penurunan jumlah siswa yang cukup signifikan dibandingkan dengan tahun sebelumnya. Penelitian ini bertujuan untuk menentukan kelanjutan para siswa dalam mengikuti lembaga bimbingan berdasarkan karakteristik siswa lembaga serta banyaknya pertemuan yang dilakukan. Kelanjutan mengikuti lembaga bimbingan ini bertujuan untuk mengidentifikasi materi dan jenjang apa yang diminati para siswa sehingga akan lanjut mengikuti lembaga studi bimbingan Nusagama Grup. Penelitian ini menggunakan data sekunder dari 78 siswa. Metode yang digunakan adalah analisis CHAID (Chi-Squared Automatic Interaction Detection Analysis) yang akan digambarkan dengan diagram pohon keputusan. Berdasarkan hasil analisis metode CHAID maka diperoleh 4 segmen pengelompokan, tingkat nilai data training sebesar 75.8% dan nilai akurasi data testing sebesar 86.67%. Hasil presisi untuk klasifikasi siswa baru dari data testing sebesar 100% dan presisi klasifikasi siswa lama sebesar 81.8%. Jika dilihat dari nilai ketepatan yang didapatkan, dapat disimpulkan bahwa metode CHAID merupakan metode yang cukup baik untuk mengklasifikasi data pada penelitian ini.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.