In this study, the cellular viability and function of immortalized human cervical and dermal cells are monitored and compared in conventional 2D and two commercial 3D membranes, Collagen and Geltrex, of varying working concentration and volume. Viability was monitored with the aid of the Alamar Blue assay, cellular morphology was monitored with confocal microscopy, and cell cycle studies and cell death mechanism studies were performed with flow cytometry. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to 3D environment causing alterations to effective resazurin concentration, uptake and conversion rates, which was dependent on exposure time, but also due to the effect of the membrane itself on cellular function. These effects were verified by flow cytometry, in which no significant differences in viable cell numbers between 2D and 3D systems were observed after 24 h culture. The results showed the observed effect was different after shorter exposure periods, was also dependent on working concentration of the 3D system and could be mediated by altering the culture vessel size. Cell cycle analysis revealed cellular function could be altered by growth on the 3D substrates and the alterations were noted to be dependent on 3D membrane concentration. The use of 3D culture matrices has been widely interpreted to result in "improved viability levels" or "reduced" toxicity or cellular "resistance" compared to cells cultured on traditional 2D systems. The results of this study show that cellular health and viability levels are not altered by culture in 3D environments, but their normal cycle can be altered as indicated in the cell cycle studies performed and such variations must be accounted for in studies employing 3D membranes for in vitro cellular screening.
The aim of this work was to study the effect of oxidative stress on the structural changes of the secondary peptide structure of amyloid beta 1–42 (Aβ 1–42), in the dentate gyrus of hippocampus of rats exposed to low doses of ozone. The animals were exposed to ozone-free air (control group) and 0.25 ppm ozone during 7, 15, 30, 60, and 90 days, respectively. The samples were studied by: (1) Raman spectroscopy to detect the global conformational changes in peptides with α-helix and β-sheet secondary structure, following the deconvolution profile of the amide I band; and (2) immunohistochemistry against Aβ 1–42. The results of the deconvolutions of the amide I band indicate that, ozone exposure causes a progressively decrease in the abundance percentage of α-helix secondary structure. Furthermore, the β-sheet secondary structure increases its abundance percentage. After 60 days of ozone exposure, the β-sheet band is identified in a similar wavenumber of the Aβ 1–42 peptide standard. Immunohistochemistry assays show an increase of Aβ 1–42 immunoreactivity, coinciding with the conformational changes observed in the Raman spectroscopy of Aβ 1–42 at 60 and 90 days. In conclusion, oxidative stress produces changes in the folding process of amyloid beta peptide structure in the dentate gyrus, leading to its conformational change in a final β-sheet structure. This is associated to an increase in Aβ 1–42 expression, similar to the one that happens in the brain of Alzheimer’s Disease (AD) patients.
Solar radiation exposure is recognised to be a significant contributor to the development of skin cancer. Monitoring the simultaneous and consecutive mechanisms of interaction could provide a greater understanding of the process of photocarcinogenesis. This work presents an analysis of the biochemical and morphological changes occurring to immortalised human epithelial keratinocyte (HaCaT) cell cultures exposed to simulated solar radiation (SSR). Cell viability was monitored with the aid of the Alamar Blue assay, morphological examination was done with haematoxylin and eosin staining (H&E) and changes to the biochemical constituents (nucleic acids and proteins) as a result of the radiation insult were demonstrated through a combination of Raman microspectroscopy and multivariate analysis of spectral patterns. The spectral results suggest that SSR induces changes to the conformational structure of DNA as an immediate result of the radiation, whereas alteration in the protein signature is mostly seen as a later response.
Understanding and amelioration of the effects of solar radiation exposure are critical in preventing the occurrence of skin cancer. Towards this end, many studies have been conducted in 2D cell culture models under simplified and unrealistic conditions. 3D culture models better capture the complexity of in vivo physiology, although the effects of the 3D extracellular matrix have not been well studied. Monitoring the instantaneous and resultant cellular responses to exposure, and the influence of the 3D environment, could provide an enhanced understanding of the fundamental processes of photocarcinogenesis. This work presents an analysis of the biochemical impacts of simulated solar radiation (SSR) occurring in immortalised human epithelial keratinocytes (HaCaT), in a 3D skin model, compared to 2D culture. Cell viability was monitored using the Alamar Blue colorimetric assay (AB), and the impact of the radiation exposure, at the level of the biomolecular constituents (nucleic acids and proteins), were evaluated through the combination of Raman microspectroscopy and multivariate statistical analysis. The results suggest that SSR exposure induces alterations of the conformational structure of DNA as an immediate impact, whereas changes in the protein signature are primarily seen as a subsequent response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.