Aminoacyl-tRNAs (aa-tRNAs) are selected by the messenger RNA programmed ribosome in ternary complex with elongation factor Tu (EF-Tu) and GTP and then, again, in a proofreading step after GTP hydrolysis on EF-Tu. We use tRNA mutants with different affinities for EF-Tu to demonstrate that proofreading of aatRNAs occurs in two consecutive steps. First, aa-tRNAs in ternary complex with EF-Tu·GDP are selected in a step where the accuracy increases linearly with increasing aa-tRNA affinity to EF-Tu. Then, following dissociation of EF-Tu·GDP from the ribosome, the accuracy is further increased in a second and apparently EFTu−independent step. Our findings identify the molecular basis of proofreading in bacteria, highlight the pivotal role of EF-Tu for fast and accurate protein synthesis, and illustrate the importance of multistep substrate selection in intracellular processing of genetic information.ribosome | error correction | fidelity | EF-Tu | ternary complex
Spt4 is a transcription elongation factor with homologs in organisms with nucleosomes. Structural and in vitro studies implicate Spt4 in transcription through nucleosomes, and yet the in vivo function of Spt4 is unclear. Here, we assess the precise position of Spt4 during transcription and the consequences of the loss of Spt4 on RNA polymerase II (RNAPII) dynamics and nucleosome positioning in Saccharomyces cerevisiae. In the absence of Spt4, the spacing between gene-body nucleosomes increases and RNAPII accumulates upstream of the nucleosomal dyad, most dramatically at nucleosome +2. Spt4 associates with elongating RNAPII early in transcription, and its association dynamically changes depending on nucleosome positions. Together, our data show that Spt4 regulates early elongation dynamics, participates in co-transcriptional nucleosome positioning, and promotes RNAPII movement through the gene-body nucleosomes, especially the +2 nucleosome.
Spt4 is a transcription elongation factor, with homologues in organisms with nucleosomes. Structural and in vitro studies implicate Spt4 in transcription through nucleosomes, yet the in vivo function of Spt4 is unclear. Here we assessed the precise position of Spt4 during transcription and the consequences of loss of Spt4 on RNA polymerase II (RNAPII) dynamics and nucleosome positioning in Saccharomyces cerevisiae. In the absence of Spt4, the spacing between gene-body nucleosomes increases and RNAPII accumulates upstream of the nucleosomal dyad, most dramatically at nucleosome +2. Spt4 associates with elongating RNAPII early in transcription and its association dynamically changes depending on nucleosome positions. Together, our data show that Spt4 regulates early elongation dynamics, participates in co-transcriptional nucleosome positioning, and promotes RNAPII movement through the gene-body nucleosomes, especially the +2 nucleosome.
e23054 Background: IDH1 mutations detected in glioma cells impair the insulator function between FIPL1L1 and PDGFRA at 4q12 ( Flavahan et al. 2016). We have used a high-resolution chromosome-conformation capture 3C analysis platform, EpiSwitch, and quantitative PCR, to map, evaluate, and quantify the TKI-sensitive conformational juxtaposition between FIP1L1 and PDGFRA. Loss of the insulator function in glioma prompted us to investigate the same interaction in the context of insulator loss with interstitial deletions at 4q12 in eosinophilic leukemias and AML. Methods: We tested a total of 72 primers in temperature gradient PCRs, with concentration matched negative controls, using the AML cell lines EOL-1 and HL-60. Products were sequenced in forward and reverse order. Dual label 5’FAM-BHQ1-3’hydrolysis probe assays, entirely specific for the PCR products, targeted the junction region of the 3C fragments. A reference 3C interaction was used as an internal copy number control for 3C library production. Results: EpiSwitch predicted and identified six 3C FIP1L1-PDGFRA interactions in different sequence orientations, within the 3D organization of the PDGFRA locus. The interaction D7 identified by the EpiSwitch qPCR assay was detected reproducibly in EOL-1 cells and glioblastoma tissue using both single step PCR and qPCR. An imatinib-sensitive AML cell line EOL-1 was used as a positive control for qPCR assays. Both AML and glioma cell lines tested positive using the assay as did glioma patient biopsies. The glioblastoma cell line DBTRG-05MG also tested positive for the D7 interaction at a maximum of 8.92 copies per 20 ng of the template. Conclusions: We confirmed and characterized, at high resolution, the conformational deregulation of FIP1L1 and PDGFRA in glioma. Additionally, our group detected the interaction in TKI-sensitive leukemia cell lines. The analysis of 3C microstructural alterations is consistent with latest insights into epigenetic regulation of PDGFRA. It provides a promising approach to the stratification of patients for tyrosine kinase inhibitor treatment, which could not be provided diagnostically with conventional sequencing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.