Asparagine-linked glycosylation is a common post-translational modification of proteins catalyzed by oligosaccharyltransferase that is important in regulating many aspects of protein function. Analysis of protein glycosylation, including glycoproteomic measurement of the site-specific extent of glycosylation, remains challenging. Here, we developed methods combining enzymatic deglycosylation and protease digestion with SWATH-MS to enable automated measurement of site-specific occupancy at many glycosylation sites. Deglycosylation with peptide-endoglycosidase H, leaving a remnant N-acetylglucosamine on asparagines previously carrying high-mannose glycans, followed by trypsin digestion allowed robust automated measurement of occupancy at many sites. Combining deglycosylation with the more general peptide-N-glycosidase F enzyme with AspN protease digest allowed robust automated differentiation of nonglycosylated and deglycosylated forms of a given glycosylation site. Ratiometric analysis of deglycosylated peptides and the total intensities of all peptides from the corresponding proteins allowed relative quantification of site-specific glycosylation occupancy between yeast strains with various isoforms of oligosaccharyltransferase. This approach also allowed robust measurement of glycosylation sites in human salivary glycoproteins. This method for automated relative quantification of site-specific glycosylation occupancy will be a useful tool for research with model systems and clinical samples.
Highlights d HNF4A loss upregulates GSK3b and drives a squamous-like metabolic profile d GSK3b targeting inhibits glycolysis in squamous patientderived cell lines (PDCLs) d A subset of squamous PDCLs acquires GSK3b drug tolerance d ATAC-seq analysis reveals an accessible WNT gene program in drug-tolerant PDCLs
Asparagine-linked glycosylation is a common post-translational modification of proteins in eukaryotes. Mutations in the human ALG3 gene cause changed levels and altered glycan structures on mature glycoproteins and are the cause of a severe congenital disorder of glycosylation (CDG-Id). Diverse glycoproteins are also under-glycosylated in Saccharomyces cerevisae alg3 mutants. Here we analyzed site-specific glycosylation occupancy in this yeast model system using peptide-N-glycosidase F to label glycosylation sites with an asparagine-aspartate conversion that creates a new endoproteinase AspN cleavage site, followed by proteolytic digestion, and detection of peptides and glycopeptides by LC-ESI-MS/MS. We used this analytical method to identify and measure site-specific glycosylation occupancy in alg3 mutant and wild type yeast strains. We found decreased site-specific N-glycosylation occupancy in the alg3 knockout strain preferentially at Asn-Xaa-Ser sequences located in secondary structural elements, features previously associated with poor glycosylation efficiency. Furthermore, we identified 26 previously experimentally unverified glycosylation sites. Our results provide insights into the underlying mechanisms of disease in CDG-Id, and our methodology will be useful in site-specific glycosylation analysis in many model systems and clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.