To characterize the features of JAK/STAT signaling in Drosophila immune response, we have identified totA as a gene that is regulated by the JAK/STAT pathway in response to septic injury. We show that septic injury triggers the hemocyte-specific expression of upd3, a gene encoding a novel Upd-like cytokine that is necessary for the JAK/STAT-dependent activation of totA in the Drosophila counterpart of the mammalian liver, the fat body. In addition, we demonstrate that totA activation also requires the NF-KB-like Relish pathway, indicating that fat body cells integrate the activity of NF-KB and JAK/STAT signaling pathways upon immune response. This study reveals that, in addition to the pattern recognition receptor-mediated NF-KB-dependent immune response, Drosophila undergoes a complex systemic response that is mediated by the production of cytokines in blood cells, a process that is similar to the acute phase response in mammals.
The GATA motif is a well known positive cis -regulatory element in vertebrates. In this work we report experimental evidence for the direct participation of a GATA motif in the expression of the Drosophila antibacterial peptide gene Cecropin A1 . Previously we have shown that a kappaB-like site is necessary for Cecropin A1 gene expression. Here we present evidence that the Drosophila Rel protein which binds to the kappaB-like site requires an intact GATA site for maximal Dif-mediated transactivation of the Cecropin A1 gene. We show that a Drosophila blood cell line contains factors binding specifically to the GATA motif of the Cecropin A1 gene. The GATA binding activity is likely to include member(s) of the GATA family of transcriptional regulators. We show that the promoters of several inducible insect immune genes possess GATA sites 0-12 base pairs away from kappaB-like sites in functionally important promoter regions. Clusters of GATA and kappaB sites are also observed in the promoters of two important mammalian immune genes, namely IL6 and IL3. The consistent proximity of GATA and kappaB sites appears to be a common theme in the immune gene expression of insects and mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.