We used riboprobes and monoclonal antibodies to characterize tissue distribution of the human 550-kD homologue to gp330/megalin, primarily identified in the rat kidney. Human gp330/megalin mRNA and protein are readily identified in human parathyroid cells, placental cytotrophoblasts, kidney proximal tubule cells, and epididymal epithelial cells. The immunoreactivity is found on the surface of the cells and is heterogeneously downregulated in parathyroid hyperplasia and adenomas. Cells of the proximal kidney tubule and epididymis express the protein on their luminal aspect. Moreover, the protein is expressed in Type II pneumocytes, mammary epithelial and thyroid follicular cells, and the ciliary body of the eye. Sequence analysis of cDNA fragments, obtained by RT-PCR, revealed identical nucleotide sequences in parathyroid, kidney, placenta, epididymis, and lung. Immunohistochemistry for parathyroid hormone-related protein (PTHrP) revealed partial co-expression with human gp330/megalin in parathyroid, placenta, and mammary gland. The findings substantiate human gp330/megalin expression in a variety of human tissues expected to possess calcium-sensing functions. It may constitute a protein of utmost importance to adult and fetal calcium homeostasis, although other important functions may also be coupled to this exceptionally large protein with highly restricted tissue distribution.
Myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1.) is in Brassicaceae species such as Brassica napus and Sinapis alba encoded by two differentially expressed gene families, MA and MB, consisting of about 4 and 10 genes, respectively. Southern blot analysis showed that Arabidopsis thaliana contains three myrosinase genes. These genes were isolated from a genomic library and two of them, TGG1 and TGG2, were sequenced. They were found to be located in an inverted mode with their 3' ends 4.4 kb apart. Their organization was highly conserved with 12 exons and 11 short introns. Comparison of nucleotide sequences of TGG1 and TGG2 exons revealed an overall 75% similarity. In contrast, the overall nucleotide sequence similarity in introns was only 42%. In intron 1 the unusual 5' splice border GC was used. Phylogenetic analyses using both distance matrix and parsimony programs suggested that the Arabidopsis genes could not be grouped with either MA or MB genes. Consequently, these two gene families arose only after Arabidopsis had diverged from the other Brassicaceae species. In situ hybridization experiments showed that TGG1 and TGG2 expressing cells are present in leaf, sepal, petal, and gynoecium. In developing seeds, a few cells reacting with the TGG1 probe, but not with the TGG2 probe, were found indicating a partly different expression of these genes.
HLA-DR haplotypes of the human major histocompatibility complex are organized in five different groups. They can be identified based on the serological specificity expressed by the polymorphic DRB1 locus and by the presence of a characteristic set of DRB genes. The nucleotide sequences of introns 4 and 5 of the two DRB genes (DRB1(*)01 and DRB6(*)01 ) from a DR1 haplotype and the three DRB genes (DRB1(*)15, DRB6(*)15 , and DRB5(*)15 ), from a DR51 haplotype were determined. This study identified endogenous retroviral long terminal repeat elements (ERV9 LTR) located at identical positions in intron 5 of the DRB1 genes in both the DR1 and DR51 haplotypes. Phylogenetic analyses revealed a close evolutionary relationship between these two haplotypes. The DRB5 gene, unique for the DR51 haplotype, may have been lost by a recent gene deletion event creating the DR1 haplotype. A model for the evolution of the human DR haplotypes involving separate duplication and contraction events is presented.
Summary The infection of potato (Solanum tuberosum) leaves with the late blight pathogen Phytophthora infestans, or treatment with fungal elicitor, leads to the massive accumulation of pathogenesis-related (PR) proteins in the extracellular leaf space. The most abundant of these proteins was purified to apparent homogeneity and identified as a new, basic member of the PR-1 family of defence proteins, designated PR-1b. Antibodies raised against the protein and a cDNA isolated by differential screening were used to study the temporal and spatial patterns of PR-1b protein and mRNA distribution in healthy and infected potato tissues. PR-1b was present in old leaves and at low levels also in the carpels of flowers. In leaves, strong accumulation of PR-1b mRNA and protein occurred in response to infection by the oomycete pathogen Phytophthora infestans or the bacterial pathogen Pseudomonas syringae pv. maculicola. PR-1b mRNA and protein accumulation was clearly initiated at the infection site, but a delayed and sustained accumulation was also observed in neighbouring, uninfected leaves of potato plants. Tissue- and cell type-specific expression of PR-1b was analysed by immunohistochemical and in situ RNA hybridization techniques. Appreciable amounts of PR-1b protein and mRNA were localized in epidermal cells, guard cells of the stomata, glandular trichomes, crystal idioblasts, and cells of the vascular system of infected leaves. However, no significant differences in the amounts and distribution patterns of PR-1b could be observed between compatible and incompatible interactions of potato and Phytophthora infestans, indicating that PR-1b expression is not involved in determining cultivar/race-specific resistance in potato.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.