To overcome the insolubility of higher oligothiophenes and simultaneously to enhance their processability with respect to an application in molecularly doped organic light-emitting devices (OLEDs) we synthesized phenylsubstituted, phenyl-annulated, and spirofluorenyl-bridged oligothiophenes 1-5. Significantly improved solubilities in polar solvents of up to three orders of magnitude were found and their optical and electrochemical properties were investigated in solution. Reflecting small conformational changes and the almost complete electronic separation of the substituents, phenyl substitution and the introduction of a spiro core by bridging the central bithienyl unit only slightly affected optical and redox properties in comparison to the unmodified oligothiophenes (6-8). In contrast, the presence of an isothianaphthene (benzo[c]thiophene) unit in the oligomeric chain led to a distinct approximation of the frontier orbitals and consequently to a red-shift of both absorption and fluorescence. Finally, we demonstrated the applicability of some oligomers as dopants for OLEDs by electrogenerated chemiluminescence (ECL).
Photolysis of 3-azidoquinoline 6 in an Ar matrix generates 3-quinolylnitrene 7, which is characterized by its electron spin resonance (ESR), UV, and IR spectra in Ar matrices. Nitrene 7 undergoes ring opening to a nitrile ylide 19, also characterized by its UV and IR spectra. A subsequent 1,7-hydrogen shift in the ylide 19 affords 3-(2-isocyanophenyl)ketenimine 20. Matrix photolysis of 1,2,3-triazolo[1,5-c]quinoxaline 26 generates 4-diazomethylquinazoline 27, followed by 4-quinazolylcarbene 28, which is characterized by ESR and IR spectroscopy. Further photolysis of carbene 28 slowly generates ketenimine 20, thus suggesting that ylide 19 is formed initially. Flash vacuum thermolysis (FVT) of both 6 and 26 affords 3-cyanoindole 22 in high yield, thereby indicating that carbene 28 and nitrene 7 enter the same energy surface. Matrix photolysis of 3-quinolyldiazomethane 30 generates 3-quinolylcarbene 31, which on photolysis at >500 nm reacts with N2 to regenerate diazo compound 30. Photolysis of 30 in the presence of CO generates a ketene (34). 3-Quinolylcarbene 31 cyclizes on photolysis at >500 nm to 5-aza-2,3-benzobicyclo[4.1.0]hepta-2,4,7-triene 32. Both 31 and 32 are characterized by their IR and UV spectra. FVT of 30 yields a mixture of 2- and 3-cyanoindenes via a carbene–carbene–nitrene rearrangement 31 → 2-quinolylcarbene 39 → 1-naphthylnitrene 43. The reaction mechanisms are supported by density functional theory calculations of the energies and spectra of all relevant ground and transition state structures at the B3LYP/6–31G* level.
C,C-dicyanoketenimines 10a-c were generated by flash vacuum thermolysis of ketene N,S-acetals 9a-c or by thermal or photochemical decomposition of alpha-azido-beta-cyanocinnamonitrile 11. In the latter reaction, 3,3-dicyano-2-phenyl-1-azirine 12 is also formed. IR spectroscopy of the keteniminines isolated in Ar matrixes or as neat films, NMR spectroscopy of 10c, and theoretical calculations (B3LYP/6-31G) demonstrate that these ketenimines have variable geometry, being essentially linear along the CCN-R framework in polar media (neat films and solution), but in the gas phase or Ar matrix they are bent, as is usual for ketenimines. Experiments and calculations agree that a single CN substituent as in 13 is not enough to enforce linearity, and sulfonyl groups are less effective that cyano groups in causing linearity. C,C-bis(methylsulfonyl)ketenimines 4-5 and a C-cyano-C-(methylsulfonyl)ketenimine 15 are not linear. The compound p-O2NC6H4N=C=C(COOMe)2 previously reported in the literature is probably somewhat linearized along the CCNR moiety. A computational survey (B3LYP/6-31G) of the inversion barrier at nitrogen indicates that electronegative C-substituents dramatically lower the barrier; this is also true of N-acyl substituents. Increasing polarity causes lower barriers. Although N-alkylbis(methylsulfonyl)ketenimines are not calculated to be linear, the barriers are so low that crystal lattice forces can induce planarity in N-methylbis(methylsulfonyl)ketenimine 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.