The complex network of neuronal cells in the retina makes it a potential target of neuronal toxicity – a risk factor for visual loss. With growing use of nanoparticles (NPs) in commercial and medical applications, including ophthalmology, there is a need for reliable models for early prediction of NP toxicity in the eye and retina. Metal NPs, such as gold and silver, gain much of attention in the ophthalmology community due to their potential to cross the barriers of the eye. Here, NP uptake and signs of toxicity were investigated after exposure to 20 and 80 nm Ag- and AuNPs, using an in vitro tissue culture model of the mouse retina. The model offers long-term preservation of retinal cell types, numbers and morphology and is a controlled system for delivery of NPs, using serum-free defined culture medium. AgNO3-treatment was used as control for toxicity caused by silver ions. These end-points were studied; gross morphological organization, glial activity, microglial activity, level of apoptosis and oxidative stress, which are all well described as signs of insult to neural tissue. TEM analysis demonstrated cellular- and nuclear uptake of all NP types in all neuronal layers of the retina. Htx-eosin staining showed morphological disruption of the normal complex layered retinal structure, vacuole formation and pyknotic cells after exposure to all Ag- and AuNPs. Significantly higher numbers of apoptotic cells as well as an increased number of oxidative stressed cells demonstrated NP-related neuronal toxicity. NPs also caused increased glial staining and microglial cell activation, typical hallmarks of neural tissue insult. This study demonstrates that low concentrations of 20 and 80 nm sized Ag- and AuNPs have adverse effects on the retina, using an organotypic retina culture model. Our results motivate careful assessment of candidate NP, metallic or-non-metallic, to be used in neural systems for therapeutic approaches.
S U M M A R Y The pig is becoming an increasingly used non-primate model in experimental studies of human retinal diseases and disorders. The anatomy, size, and vasculature of the porcine eye and retina closely resemble their human counterparts, which allows for application of standard instrumentation and diagnostics used in the clinic. Despite many reports that demonstrate immunohistochemistry as a useful method for exploring neuropathological changes in the mammalian central nervous system, including the pig, the porcine retina has been sparsely described. Hence, to facilitate further immunohistochemical analysis of the porcine retina, we report on the successful use of a battery of antibodies for staining of paraformaldehyde-fixed cryosectioned retina. The following antibodies were evaluated for neuronal cells and structures: recoverin (cones and rods), Rho4D2 (rods), transducin-g (cones), ROM-1 (photoreceptor outer segments), calbindin (horizontal cells), PKC-a (bipolar cells), parvalbumin (amacrine and displaced amacrine cells), and NeuN (ganglion cells and displaced amacrines). For detecting synaptic connections in fiber layers, we used an antibody against synaptobrevin. For detecting retinal pigment epithelium, we studied antibodies against cytokeratin and RPE65, respectively. The glial cell markers used were bFGF (Müller cells and displaced amacrine cells), GFAP (Müller cells and astrocytes), and vimentin (Müller cells). Each staining effect was evaluated with regard to its specificity, sensitivity, and reproducibility in the identification of individual cells, specific cell structures, and fiber layers, respectively. The markers parvalbumin and ROM-1 were tested here for the first time for the porcine retina. All antibodies tested resulted in specific staining of high quality. In conclusion, all immunohistochemical protocols presented here will be applicable in fixed, cryosectioned pig retina. (J Histochem Cytochem 58:377-389, 2010)
Rapid development of nanotechnologies and their applications in clinical research have raised concerns about the adverse effects of nanoparticles (NPs) on human health and environment. NPs can be directly taken up by organs exposed, but also translocated to secondary organs, such as the central nervous system (CNS) after systemic- or subcutaneous administration, or via the olfactory system. The CNS is particularly vulnerable during development and recent reports describe transport of NPs across the placenta and even into brain tissue using in vitro and in vivo experimental systems. Here, we investigated whether well-characterized commercial 20 and 80 nm Au- and AgNPs have an effect on human embryonic neural precursor cell (HNPC) growth. After two weeks of NP exposure, uptake of NPs, morphological features and the amount of viable and dead cells, proliferative cells (Ki67 immunostaining) and apoptotic cells (TUNEL assay), respectively, were studied. We demonstrate uptake of both 20 and 80 nm Au- and AgNPs respectively, by HNPCs during proliferation. A significant effect on the sphere size- and morphology was found for all cultures exposed to Au- and AgNPs. AgNPs of both sizes caused a significant increase in numbers of proliferating and apoptotic HNPCs. In contrast, only the highest dose of 20 nm AuNPs significantly affected proliferation, whereas no effect was seen on apoptotic cell death. Our data demonstrates that both Au- and AgNPs interfere with the growth profile of HNPCs, indicating the need of further detailed studies on the adverse effects of NPs on the developing CNS.
We demonstrate an artificial three-dimensional (3D) electrical active human neuronal network system, by the growth of brain neural progenitors in highly porous low density electrospun poly-ε-caprolactone (PCL) fiber scaffolds. In neuroscience research cell-based assays are important experimental instruments for studying neuronal function in health and disease. Traditional cell culture at 2D-surfaces induces abnormal cell-cell contacts and network formation. Hence, there is a tremendous need to explore in vivo-resembling 3D neural cell culture approaches. We present an improved electrospinning method for fabrication of scaffolds that promote neuronal differentiation into highly 3D integrated networks, formation of inhibitory and excitatory synapses and extensive neurite growth. Notably, in 3D scaffolds in vivo-resembling intermixed neuronal and glial cell network were formed, whereas in parallel 2D cultures a neuronal cell layer grew separated from an underlying glial cell layer. Hence, the use of the 3D cell assay presented will most likely provide more physiological relevant results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.