Malware analysis is the process of determining the purpose and functionality of a given malware sample (such as a virus, worm, or Trojan horse). This process is a necessary step to be able to develop effective detection techniques for malicious code. In addition, it is an important prerequisite for the development of removal tools that can thoroughly delete malware from an infected machine. Traditionally, malware analysis has been a manual process that is tedious and timeintensive. Unfortunately, the number of samples that need to be analyzed by security vendors on a daily basis is constantly increasing. This clearly reveals the need for tools that automate and simplify parts of the analysis process. In this paper, we present TTAnalyze, a tool for dynamically analyzing the behavior of Windows executables. To this end, the binary is run in an emulated operating system environment and its (security-relevant) actions are monitored. In particular, we record the Windows native system calls and Windows API functions that the program invokes. One important feature of our system is that it does not modify the program that it executes (e.g., through API call hooking or breakpoints), making it more difficult to detect by malicious code. Also, our tool runs binaries in an unmodified Windows environment, which leads to excellent emulation accuracy. These factors make TTAnalyze an ideal tool for quickly understanding the behavior of an unknown malware.
Each day, security companies see themselves confronted with thousands of new malware programs. To cope with these large quantities, researchers and practitioners alike have developed dynamic malware analysis systems. These systems automatically execute a program in a controlled environment and produce a report describing the program's behavior. During the last three years, the number of malware programs appearing each day has increased by a factor of ten, and this number is expected to continue to grow. To keep pace with these developments without causing even more hardware costs for operating dynamic analysis systems, we have developed a technique that drastically reduces the overall analysis time. Our solution is based on the insight that the huge number of new malicious files is due to mutations of only a few malware programs. To save analysis time, we suggest a technique that avoids performing a full analysis of the same polymorphic file multiple times. In an experiment conducted on a set of 10,922 randomly chosen executable files, our prototype implementation was able to avoid a full dynamic analysis in 25.25 percent of the cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.