a b s t r a c tThe toxicity of chromium ions was investigated using mammalian cell cultures on impedance sensors as well as physiological in vitro sensor systems. The performance of commercially available systems like the 2500 Analyzing System (Bionas), xCELLigence (Roche) and Cytosensor Microphysiometer (Molecular Devices) was compared with a novel CMOS-based impedance-to-frequency converter device. Cell-based sensor systems are shown to be powerful tools to detect Cr(VI) pollutions within several hours in the range of multinational drinking water regulations. The ability to distinguish between toxic Cr(VI) and non-toxic Cr(III) species is one advantage of these integral sensor systems. Impedance only devices are not sufficient for the fast detection of toxic chromium species as rapid cellular changes occur only in the respiration system and the cell physiology.
Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni2+ and Cu2+) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.
In the past years, whole cell gas toxicity assays have been developed in order to study the harmful effects of gaseous chemicals. Cells are incubated with nutrition medium supplemented with the gaseous substances to be tested. These methods are not feasible for the examination of toxic gases, which are insoluble in water. Carbon monoxide (CO), a poorly soluble and toxic gas (lethal dose 1 vol% for some minutes) has been chosen as a model gas. Besides its binding to hemoglobin, it also leads to an inhibition of cytochrome c oxidase in the mitochondrial respiratory chain of living cells. Thus, a decrease in the respiratory behavior of eukaryotic cells indicates the presence of CO in a gaseous phase. Based on the Bionas® 2500 analyzing system, a device to measure the metabolic and morphological effects, caused by direct gas exposure on eukaryotic cells was established. The gaseous substances directly contact the eukaryotic cell line V79 (Chinese hamster lung fibroblast) without interfering liquid phase in between. Beside the measurement of oxygen consumption also acidification and impedance changes of the cell culture are detected by a metabolic sensor chip. In order to increase the stability different chip surface coatings like collagen A and poly‐L‐lysin (PLL) were used. Adhesion coating leads to a tighter junction of the cells to the sensor chip surface and thus enables higher stability of the confluent cell monolayer towards the gaseous flow during the gas exposure. The method reported here has the potential to become a valuable means for rapid monitoring of toxic compounds in gaseous phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.