Chlorophyll (Chl) has unique and essential roles in photosynthetic light-harvesting and energy transduction, but its biosynthesis, accumulation and degradation is also associated with chloroplast development, photomorphogenesis and chloroplast-nuclear signaling. Biochemical analyses of the enzymatic steps paved the way to the identification of their encoding genes. Thus, important progress has been made in the recent elucidation of almost all genes involved in Chl biosynthesis and breakdown. In addition, analysis of mutants mainly in Arabidopsis , genetically engineered plants and the application of photo-reactive herbicides contributed to the genetic and regulatory characterization of the formation and breakdown of Chl. This review highlights recent progress in Chl metabolism indicating highly regulated pathways from the synthesis of precursors to Chl and its degradation to intermediates, which are not longer photochemically active.
The Na+-dependent bile salt uptake systems Ntcp (rodents) and NTCP (human), and the Na+-independent organic anion transporters oatpl (rat) and OATP (human) mediate sinusoidal uptake of a variety of amphipathic organic compounds into hepatocytes. Their properties indicate that an overall hepatic clearance of albumin-bound compounds is mediated by a limited number of multispecific transporters with partially overlapping substrate specificities.
The rat liver organic anion transporting polypeptide (Oatp1) has been extensively characterized mainly in the Xenopus laevis expression system as a polyspecific carrier transporting organic anions (bile salts), neutral compounds, and even organic cations. In this study, we extended this characterization using a mammalian expression system and confirm the basolateral hepatic expression of Oatp1 with a new antibody. Besides sulfobromophthalein [Michaelis-Menten constant ( K m) of ∼3 μM], taurocholate ( K m of ∼32 μM), and estradiol- 17β-glucuronide ( K m of ∼4 μM), substrates previously shown to be transported by Oatp1 in transfected HeLa cells, we determined the kinetic parameters for cholate ( K m of ∼54 μM), glycocholate ( K m of ∼54 μM), estrone-3-sulfate ( K m of ∼11 μM), CRC-220 ( K m of ∼57 μM), ouabain ( K m of ∼3,000 μM), and ochratoxin A ( K m of ∼29 μM) in stably transfected Chinese hamster ovary (CHO) cells. In addition, three new substrates, taurochenodeoxycholate ( K m of ∼7 μM), tauroursodeoxycholate ( K m of ∼13 μM), and dehydroepiandrosterone sulfate ( K m of ∼5 μM), were also investigated. The results establish the polyspecific nature of Oatp1 in a mammalian expression system and definitely identify conjugated dihydroxy bile salts and steroid conjugates as high-affinity endogenous substrates of Oatp1.
It has been proposed that the hepatocellular Na+-dependent bile salt uptake system exhibits a broad substrate specificity in intact hepatocytes. In contrast, recent expression studies in mammalian cell lines have suggested that the cloned rat liver Na+-taurocholate cotransporting polypeptide (Ntcp) may transport only taurocholate. To characterize its substrate specificity Ntcp was stably transfected into Chinese hamster ovary (CHO) cells. These cells exhibited saturable Na+-dependent uptake of [3H]taurocholate [Michaelis constant ( K m) of ∼34 μM] that was strongly inhibited by all major bile salts, estrone 3-sulfate, bumetanide, and cyclosporin A. Ntcp cRNA-injected Xenopus laevis oocytes and the transfected CHO cells exhibited saturable Na+-dependent uptake of [3H]taurochenodeoxycholate ( K m of ∼5 μM), [3H]tauroursodeoxycholate ( K m of ∼14 μM), and [14C]glycocholate ( K m of ∼27 μM). After induction of gene expression by sodium butyrate, Na+-dependent transport of [3H]estrone 3-sulfate ( K m of ∼27 μM) could also be detected in the transfected CHO cells. However, there was no detectable Na+-dependent uptake of [3H]bumetanide or [3H]cyclosporin A. These results show that the cloned Ntcp can mediate Na+-dependent uptake of all physiological bile salts as well as of the steroid conjugate estrone 3-sulfate. Hence, Ntcp is a multispecific transporter with preference for bile salts and other anionic steroidal compounds.
The relevance of functional amino acids for taurocholate transport by the sodium-dependent taurocholate cotransporting polypeptide Ntcp was determined by site-directed mutagenesis. cRNA from 28 single-points mutants of the rat liver Ntcp clone was expressed in Xenopus laevis oocytes. Mutations were generated in five conserved negatively charged amino acids (aspartates and glutamates) which were present in nine members of the SBAT-family, in two nonconserved negatively charged amino acids, in all eight Ntcpcysteines, and in two threonines from a protein kinase C consensus region of the Ntcp C-terminus. Functional amino acids were Asp115, Glu257, and Cys266, which were found to be essential for the maintenance of taurocholic acid transport. Asp115 is located in the large intracellular loop III, whereas Glu257 and Cys266 are located in the large extracellular loop VI. Four mutations of threonines from the C-terminus of the Ntcp by alanines or tyrosines showed no effects on sodium-dependent taurocholate transport. Introduction of the FLAG Ò motif into several transport negative point mutations demonstrated that all mutated proteins besides one were present within the cell membrane of the oocytes and provided proof that an insertion defect has not caused transport deficiency by these Ntcp mutants. The latter was observed only with the transport negative mutant Asp24Asn. In conclusion, loop amino acids are required for sodium-dependent substrate translocation by the Ntcp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.