We study the lifetime of a Bose gas at and around unitarity using a Feshbach resonance in lithium 7. At unitarity, we measure the temperature dependence of the three-body decay coefficient L(3). Our data follow a L(3)=λ(3)/T(2) law with λ(3)=2.5(3)(stat)(6)(syst)×10(-20) (μK)(2) cm(6) s(-1) and are in good agreement with our analytical result based on zero-range theory. Varying the scattering length a at fixed temperature, we investigate the crossover between the finite-temperature unitary region and the previously studied regime where |a| is smaller than the thermal wavelength. We find that L(3) is continuous across the resonance, and over the whole a<0 range our data quantitatively agree with our calculation.
The low temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here we first present a theoretical model that describes the dynamic competition between two-body evaporation and three-body re-combination in a harmonically trapped unitary atomic gas above the condensation temperature. We identify a universal magic trap depth where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as well as the 2D evaporation case. Experiments performed with unitary 133 Cs and 7 Li atoms fully support our predictions and enable quantitative measurements of the 3-body recombination rate in the low temperature domain. In particular, we measure for the first time the Efimov inelasticity parameter $\eta$ * = 0.098(7) for the 47.8-G d-wave Feshbach resonance in 133 Cs. Combined 133 Cs and 7 Li experimental data allow investigations of loss dynamics over two orders of magnitude in temperature and four orders of magnitude in three-body loss. We confirm the 1/T 2 temperature universality law up to the constant $\eta$ *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.