Background: Tau aggregation is a multistep process. The identity of Tau species compromising cell viability remains largely unknown. Results: Analysis of Tau aggregation dynamic identifies oligomeric Tau aggregates as toxic species that impair viability. Conclusion: Membrane leakage induced by oligomeric Tau is a mechanism for toxicity. Significance: Tau belongs to the class of amyloidogenic proteins that share a common toxicity-mediating mechanism.
The beta-site APP-cleaving enzyme (BACE1) is a prerequisite for the generation of beta-amyloid peptides, which give rise to cerebrovascular and parenchymal beta-amyloid deposits in the brain of Alzheimer's disease patients. BACE1 is neuronally expressed in the brains of humans and experimental animals such as mice and rats. In addition, we have recently shown that BACE1 protein is expressed by reactive astrocytes in close proximity to beta-amyloid plaques in the brains of aged transgenic Tg2576 mice that overexpress human amyloid precursor protein carrying the double mutation K670N-M671L. To address the question whether astrocytic BACE1 expression is an event specifically triggered by beta-amyloid plaques or whether glial cell activation by other mechanisms also induces BACE1 expression, we used six different experimental strategies to activate brain glial cells acutely or chronically. Brain sections were processed for the expression of BACE1 and glial markers by double immunofluorescence labeling and evaluated by confocal laser scanning microscopy. There was no detectable expression of BACE1 protein by activated microglial cells of the ameboid or ramified phenotype in any of the lesion paradigms studied. In contrast, BACE1 expression by reactive astrocytes was evident in chronic but not in acute models of gliosis. Additionally, we observed BACE1-immunoreactive astrocytes in proximity to beta-amyloid plaques in the brains of aged Tg2576 mice and Alzheimer's disease patients.
Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance.
BackgroundPolymorphonuclear neutrophil (PMN) and eosinophil extracellular trap (ETs) formation has recently been described as an important host effector mechanism against invading pathogens. So far, scarce evidence on metazoan-triggered ET formation has been published. We here describe for the first time Haemonchus contortus-triggered ETs being released by bovine PMN and ovine eosinophils in response to ensheathed and exsheathed third stage larvae (L3).MethodsThe visualization of ETs was achieved by SEM analysis. The identification of classical ETs components was performed via fluorescence microscopy analysis. The effect of larval exsheathment and parasite integrity on ET formation was evaluated via Pico Green®- fluorescence intensities. ETs formation under acidic conditions was assessed by using media of different pH ranges. Parasite entrapment was evaluated microscopically after co-culture of PMN and L3. ET inhibition experiments were performed using inhibitors against NADPH oxidase, NE and MPO. Eosinophil-derived ETs were estimated via fluorescence microscopy analysis.ResultsL3 significantly induced PMN-mediated ETs and significant parasite entrapment through ETs structures was rapidly observed after 60 min of PMN and L3 co-culture. Co-localization studies of PMN-derived extracellular DNA with histones (H3), neutrophil elastase (NE) and myeloperoxidase (MPO) in parasite-entrapping structures confirmed the classical characteristics of ETs. Haemonchus contortus-triggered ETs were significantly diminished by NADPH oxidase-, NE- and MPO-inhibition. Interestingly, different forms of ETs, i.e. aggregated (aggETs), spread (sprETs) and diffused (diffETs) ETs, were induced by L3. AggETs and sprETs firmly ensnared larvae in a time dependent manner. Significantly stronger aggETs reactions were detected upon exposure of PMN to ensheathed larvae than to exsheathed ones. Low pH conditions as are present in the abomasum did not block ETosis and led to a moderate decrease of ETs. Eosinophil-ETs were identified extruding DNA via fluorescence staining.ConclusionWe postulate that ETs may limit the establishment of H. contortus within the definitive host by immobilizing the larvae and hampering them from migrating into the site of infection. Consequently, H. contortus-mediated ET formation might have an impact on the outcome of the disease. Finally, besides PMN-triggered ETs, we here present first indications of ETs being released by eosinophils upon H. contortus L3 exposure.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-015-1219-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.