Reversible protein phosphorylation is an essential regulatory mechanism in many cellular functions. In contrast to protein kinases, the role and regulation of protein phosphatases has remained ambiguous. To address this issue, we generated transgenic mice that overexpress the catalytic subunit ␣ of protein phosphatase 2A (PP2A) (PP2Ac␣) in the heart driven by the ␣-myosin heavy chain promoter. Overexpression of the PP2Ac␣ gene in the heart led to increased levels of the transgene both at RNA and protein levels. This was accompanied by a significant increase of PP2A enzyme activity in the myocardium. Morphological analysis revealed isles of necrosis and fibrosis. The phosphorylation state of phospholamban, troponin inhibitor, and eukaryotic elongation factor 2 was reduced significantly. The expression of junctional (calsequestrin) and free SR proteins (SERCA and phospholamban) was not altered. Whereas no increase in morbidity or mortality was noted, transgenic mice developed cardiac hypertrophy and reduced contractility of the heart, as well as cardiac dilatation as shown by biplane echocardiography. Taken together, these findings are indicative of the fundamental role of PP2A in cardiac function and imply that disturbances in protein phosphatases expression and activity may cause or aggravate the course of cardiac diseases.
In an integrative approach, we studied the role of histamine H 2 receptors in the mouse heart. We noted that histamine, added cumulatively to the organ bath, failed to affect the force of contraction in left atrial preparations and did not change spontaneous heart rate in right atrial preparations from wildtype mice. By contrast, in the same preparations from mice that overexpressed the human H 2 receptor in a cardiac-specific way, histamine exerted concentration-and time-dependent positive inotropic and positive chronotropic effects. Messenger RNA of the human H 2 receptor was only detected in transgenic mice. Likewise, immunohistology and autoradiography only gave signals in transgenic but not in wild-type cardiac preparations. Similarly, a positive inotropic and positive chronotropic effect was observed with histamine in echocardiography of living transgenic mice and isolated perfused hearts (Langendorff preparation). Phosphorylation of phospholamban was increased in atrial and ventricular preparations from transgenic mice, but not in wild-type animals. The effects of histamine were mimicked by dimaprit and amthamine and antagonized by cimetidine. In summary, we generated a new model to study the physiologic and pathophysiologic cardiac role of the human H 2 receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.