There are a large number of tests for instability or breaks in coefficients in regression models designed for different possible departures from the stable model. We make two contributions to this literature. First, we consider a large class of persistent breaking processes that lead to asymptotically equivalent efficient tests. Our class allows for many or relatively few breaks, clustered breaks, regularly occurring breaks, or smooth transitions to changes in the regression coefficients. Thus, asymptotically nothing is gained by knowing the exact breaking process of the class. Second, we provide a test statistic that is simple to compute, avoids any need for searching over high dimensions when there are many breaks, is valid for a wide range of data-generating processes and has good power and size properties even in heteroscedastic models. Copyright 2006 The Review of Economic Studies Limited.
The paper analyzes the impact of the initial condition on the problem of testing for unit roots. To this end, we derive a family of optimal tests that maximize a weighted average power criterion with respect to the initial condition. We then investigate the relationship of this optimal family to popular tests. We find that many unit root tests are closely related to specific members of the optimal family, but the corresponding members employ very different weightings for the initial condition. The popular Dickey-Fuller tests, for instance, put a large weight on extreme deviations of the initial observation from the deterministic component, whereas other popular tests put more weight on moderate deviations. Since the power of unit root tests varies dramatically with the initial condition, this paper explains the results of comparative power studies of unit root tests. The results allow a much deeper understanding of the merits of particular tests in specific circumstances, and a guide to choosing which statistics to use in practice.
, and consider tests of the form
In this paper, we propose constructing confidence sets for a break date in cointegrating regressions by inverting a test for the break location, which is obtained by maximizing the weighted average of power. It is found that the limiting distribution of the test depends on the number of I(1) regressors whose coefficients sustain structural change and the number of I(1) regressors whose coefficients are fixed throughout the sample. By Monte Carlo simulations, we then show that compared with a confidence interval developed by using the existing method based on the limiting distribution of the break point estimator under the assumption of the shrinking shift, the confidence set proposed in the present paper has a more accurate coverage rate, while the length of the confidence set is comparable. By using the method developed in this paper, we then investigate the cointegrating regressions of Russian macroeconomic variables with oil prices with a break. JEL classification: C12, C21
We develop a general approach to robust inference about a scalar parameter when the data is potentially heterogeneous and correlated in a largely unknown way. The key ingredient is the following result of Bakirov and Székely (2005) concerning the small sample properties of the standard t−test: For a significance level of 5% or lower, the t−test remains conservative for underlying observations that are independent and Gaussian with heterogenous variances. One might thus conduct robust large sample inference as follows: partition the data into q ≥ 2 groups, estimate the model for each group and conduct a standard t−test with the resulting q parameter estimators. This results in valid inference as long as the groups are chosen in a way that ensures the parameter estimators to be asymptotically independent, unbiased and Gaussian of possibly different variances. We provide examples of how to apply this approach to time series, panel, clustered and spatially correlated data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.