Data from a simple tone-in-noise simultaneous masking task were used to evaluate each of two common adaptive staircase rules (a "1 up 2 down" rule and a "1 up 3 down" rule) and the parameter estimation by sequential testing (PEST) technique in combination with each of two psychophysical procedures [a two-alternative forced-choice (2AFC) and a three-alternative forced-choice (3AFC) procedure]. These human data were compared to predictions generated by a mathematical model based on Markov theory. The model predicts that threshold estimates obtained with the adaptive techniques should be equal to those derived with equivalent "fixed signal level" techniques. However, the human data indicate that the adaptive techniques tend to yield lower thresholds. The model predicts that the standard error of a threshold estimate obtained from an adaptive technique will decrease and approach zero as the number of trials used to compute the estimate increases. The human data show greater variability than predicted and approach a nonzero value as the number of trials increases. The predictions of the model suggest that the commonly used combination of the 2AFC procedure and the 1 up 2 down rule is the least efficient method of estimating a threshold and that the 3AFC procedure in combination with the 1 up 3 down rule is the most efficient method. The human data are less consistent, but generally show the combination of the 2AFC procedure and the 1 up 2 down rule to be one of the least efficient methods. Possible explanations for the differences between the model's predictions and the human data, as well as suggestions for laboratory practice, are discussed.
Phase effects in masking experiments using multitone maskers are usually associated with strong variations in the masker envelope. In this article, psychoacoustic experiments with such maskers that lead to phase-dependent threshold variations of up to 20 dB, although the phase transformation leaves the envelope unchanged, are described. However, after filtering the maskers with a realistic basilar membrane model, the envelopes are different owing to the models phase-dispersive properties. Comparison of model outputs with the experimental results reveals a strong correlation between the two for a wide range of parameters, provided one makes the additional assumption that the ear has a minimum integration time of a few milliseconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.