Polyoxometalates containing noble metal ions, such as ruthenium, osmium, rhodium, palladium, platinum, silver and gold, are a structurally diverse class of compounds. They include both classical heteropolyanions (vanadates, molybdates, tungstates) in which noble metals are present as heteroatoms, as well as the recently discovered class of polyoxometalates with noble metal "addenda" atoms. The focus of this Review is on complexes that should, in principle, exist as discrete molecular species in solution, and which are therefore of interest for their reactivity, their future synthetic utility and potential applications, for example, in catalysis or nanoscience.
Anions get wheely big: A Cu20‐containing polyoxotungstate of large size and high symmetry was synthesized by making use of the template effect. The wheel‐shaped [Cu20Cl(OH)24(H2O)12(P8W48O184)]25− ion (see picture; black W, turquoise Cu, yellow P, violet Cl, red O) is the first transition‐metal‐substituted derivative of [H7P8W48O184]33− and incorporates more paramagnetic 3d metal ions than any other polyoxotungstate to date.
The oxidation of alkenes by H(2)O(2) catalyzed by Ti(IV)-containing polyoxometalates (POMs) as models of Ti single-site catalysts has been investigated at DFT level and has been compared with other early transition-metal-substituted polyoxometalates. We have studied in detail the reaction mechanism of the C(2)H(4) epoxidation with H(2)O(2) mediated by two different POMs, the Ti-monosubstituted Keggin-type POM [PTi(OH)W(11)O(39)](4-) and the Ti-disubstituted sandwich-type POM [Ti(2)(OH)(2)As(2)W(19)O(67)(H(2)O)](8-). These species exhibit well-defined 6- and 5-coordinated titanium environments. For both species, the reaction proceeds through a two-step mechanism: (i) the Ti-OH groups activate H(2)O(2) with a moderate energy barrier yielding either Ti-hydroperoxo (Ti(IV)-OOH) or Ti-peroxo (Ti(IV)-OO) intermediate, and (ii) the less stable but more reactive Ti-hydroperoxo species transfers oxygen to alkene to form the epoxide, this latter step being the rate-determining step. The higher activity of the sandwich anion was attributed to the absence of dimer formation, and its higher selectivity to the larger energy cost of homolytic O-O bond breaking in the hydroperoxo intermediate. We also propose several requisites to improve the efficiency of Ti-containing catalysts, including flexible and 5-fold (or lower) coordinated Ti environments, as well as reagent-accessible Ti sites. Calculations on other TM-containing Keggin-type POMs [PTM(OH)W(11)O(39)](4-) (TM = Zr(IV), V(V), Nb(V), Mo(VI), W(VI), and Re(VII)) showed that when we move from the left to the right in the periodic table the formation of the epoxide via peroxo intermediate becomes competitive because of the higher mixing between the orbitals of the TM and the O-O unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.