Preparation of multifunctional and well-defined macromolecules requires a smart selection of the most suitable controlled polymerization technique in combination with appropriate click reactions. In this review, we provide an overview on the use of various ''clickable'' initiators and monomers as well as on the postpolymerization modifications that have been widely used to construct clickable macromolecules. As such, this contribution will aid polymer chemists to select a suitable combination of CRP and click methodologies to design the target structures.
A series of thermoresponsive diblock copolymers of poly [2-(dimethylamino)ethyl methacrylate-block-di(ethyleneglycol) methyl ether methacrylate], poly(DMAEMA-b-DEGMA), were synthesized by reversible addition−fragmentation chain transfer (RAFT) polymerizations. The series consist of diblock and quasi diblock copolymers. Sequential monomer addition was used for the quasi diblock copolymer synthesis and the macro-chain transfer approach was utilized for the block copolymer synthesis. The focus of this contribution is the controlled variation of the ratios of DMAEMA to DEGMA in the copolymer composition, resulting in a systematic polymer library. One of the investigated block copolymer systems showed double lower critical solution temperature (LCST) behavior in water and was further investigated. The phase transitions of this block copolymer were studied in aqueous solutions by turbidimetry, dynamic light scattering (DLS), variable temperature proton nuclear magnetic resonance ( 1 H NMR) spectroscopy, zeta potential, and cryo transmission electron microscopy (cryo-TEM). The block copolymer undergoes a two-step thermo-induced self-assembly, which results in the formation of multilamellar vesicles after the first LCST temperature and to unilamellar vesicles above the second LCST transition. An interplay of ionic interactions as well as the change of the corresponding volume fraction during the LCST transitions were identified as the driving force for the double responsive behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.