An updated suprageneric classification is provided for Apocynaceae to bring the family into better agreement with recent morphological and molecular, mainly phylogenetic-based, results. A total of 366 genera are recognized and placed within five subfamilies, 25 tribes and 49 subtribes. In Apocynaceae s. str., one new tribe (Amsonieae) and two new subtribes (Tonduziinae and Vincinae) are described in Rauvolfioideae, and one new tribe (Rhabdadenieae) and nine new subtribes (Amphineuriinae, Beaumontiinae, Chonemorphinae, Galactophorinae, Papuechitinae, Peltastinae, Pentalinoninae, Prestoniinae and Urceolinae) are described or validated in Apocynoideae. Within Asclepiadoideae, one new tribe (Eustegieae) and three subtribes (Diplolepinae, Pentacyphinae and Tassadiinae) are described or validated.
Summary• By emitting strong fetid scents, sapromyiophilous flowers mimic brood and food sites of flies to attract them as pollinators. To date, intensive comparative scent analyses have been restricted to sapromyiophilous Araceae. Here, we analysed flower volatiles of fetid stapeliads to improve our understanding of the floral biology of fly pollinated species, and to learn whether mimicry types comparable to those found in Araceae exist.• Floral volatiles of 15 species out of 11 genera within the AsclepiadoideaeCeropegieae-Stapeliinae were collected via headspace adsorption and thermal desorption and analysed by gas chromatography-mass spectometry (GC-MS). Data were analysed using CNESS-NMDS statistics.• Sapromyiophilous stapeliads are highly diverse in their scent composition, in which sulphur compounds, benzenoids, fatty acid derivatives or nitrogen-containing compounds dominate. Four groups are evident: species with high p-cresol content but low amounts of polysulphides (herbivore faeces mimicry); species with mainly polysulphides and low amounts of p-cresol (carnivore/omnivore faeces or carcass mimicry); species with high amounts of heptanal and octanal (carnivore/omnivore faeces or carcass mimicry); and species with hexanoic acid (urine mimicry).• Considering the findings in the unrelated Araceae, our results support the universality of different mimicry types that are obviously subsumed under the sapromyiophilous syndrome.
Four to six percent of plants, distributed over different angiosperm families, entice pollinators by deception [1]. In these systems, chemical mimicry is often used as an efficient way to exploit the olfactory preferences of animals for the purpose of attracting them as pollinators [2,3]. Here, we report a very specific type of chemical mimicry of a food source. Ceropegia sandersonii (Apocynaceae), a deceptive South African plant with pitfall flowers, mimics attacked honeybees. We identified kleptoparasitic Desmometopa flies (Milichiidae) as the main pollinators of C. sandersonii. These flies are well known to feed on honeybees that are eaten by spiders, which we thus predicted as the model chemically mimicked by the plant. Indeed, we found that the floral scent of C. sandersonii is comparable to volatiles released from honeybees when under simulated attack. Moreover, many of these shared compounds elicited physiological responses in antennae of pollinating Desmometopa flies. A mixture of four compounds-geraniol, 2-heptanone, 2-nonanol, and (E)-2-octen-1-yl acetate-was highly attractive to the flies. We conclude that C. sandersonii is specialized on kleptoparasitic fly pollinators by deploying volatiles linked to the flies' food source, i.e., attacked and/or freshly killed honeybees. The blend of compounds emitted by C. sandersonii is unusual among flowering plants and lures kleptoparasitic flies into the trap flowers. This study describes a new example of how a plant can achieve pollination through chemical mimicry of the food sources of adult carnivorous animals.
The genus Ceropegia has largely radiated without evolutionary shifts in pollinator functional specialization, maintaining its interactions with small Diptera. Intriguing biogeographic and phylogenetic patterns may reflect processes of regional dispersal, diversification and subsequent specialization onto a narrower range of pollinators, though some of the findings may be caused by inconsistent sampling. Comparisons are made with other plant genera in the Aristolochiaceae and Araceae that have evolved flask-shaped flowers that trap female flies seeking oviposition sites.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.