This paper presents a µPIV measurement of the 3D2C velocity distribution of Taylor droplets moving in a square horizontal microchannel at Ca c = 0.005 and Re c = 0.051. We reconstruct the third velocity component and present an accuracy assessment of the reconstruction based on a volume flow balance of the 3D3C velocity field. The velocity field allows the investigation of the 3D flow features such as stagnation regions and the shear rate distribution. The maximum shear rate is located at the entrances and exits of the wall films and at the corner flow (gutter) bypassing the Taylor droplet. The regions of high strain correspond to the cap positions of the Taylor droplets. An experimental data set allows visualization of the streamlines of the velocity distribution on the interface of a Taylor droplet and to directly relate it to the main and secondary vortices of the droplet phase velocity field. The measurement data are provided as a digital resource for the validation of numerical simulation or further assessment.
Microscopic multiphase flows have gained broad interest due to their capability to transfer processes into new operational windows and achieving significant process intensification. However, the hydrodynamic behavior of Taylor droplets is not yet entirely understood. In this work, we introduce a model to determine the excess velocity of Taylor droplets in square microchannels. This velocity difference between the droplet and the total superficial velocity of the flow has a direct influence on the droplet residence time and is linked to the pressure drop. Since the droplet does not occupy the entire channel cross section, it enables the continuous phase to bypass the droplet through the corners. A consideration of the continuity equation generally relates the excess velocity to the mean flow velocity. We base the quantification of the bypass flow on a correlation for the droplet cap deformation from its static shape. The cap deformation reveals the forces of the flowing liquids exerted onto the interface and allows estimating the local driving pressure gradient for the bypass flow. The characterizing parameters are identified as the bypass length, the wall film thickness, the viscosity ratio between both phases and the Ca-number. The proposed model is adapted with a stochastic, metaheuristic optimization approach based on high-speed camera measurements. In addition, our model is successfully verified with published empirical data.
This article examines the velocity distributions of microscopic liquid-liquid two-phase flows by means of micro particle image velocimetry (micro-PIV). Aqueous droplets are dispersed into an oil bulk at the T-junction of a micro fluidic Polydimethylsiloxane (PDMS) device. The channel geometry is rectangular (H: 100μm, W: 100μm). The flow is pressure driven. Tracer particles (D: 0.5–1.2μm) are added to either phase, enabling simultaneous measurements in both phases. However, the use of immiscible liquids causes optical disturbances due to a difference in refractive indices of the two liquids and due to a curved interface geometry. Particle images are thus imaged in a distorted field of view. The results of a PIV analysis will be inaccurate in scaling as well as in location of the velocity vectors — depending on the mismatch of the refractive index. We present a basic analysis on the effect of mismatched refractive indices on the precision of the velocity measurements. The estimation is based on Snell’s law and the simplified geometry of a spherical droplet. Furthermore, we propose a method to match not only the index of refraction accurately but also to leave one additional degree of freedom to set an additional property of the liquid-liquid system, e.g. viscosity ratio or density ratio. The latter ensures that properties of the modified liquid-liquid system are close to those of the non-modified two-phase system. The findings of this study are part of the design of a Lab-on-a-Chip device. It performs a DNA analysis in an online quality control application. The miniaturization of a two-phase flow combines the benefits of confined sample compartments (i.e. droplets) with the easy-to-control process parameters of a miniaturized device (e.g. temperature, pressure). Thus band broadening of the sample by Taylor-Aris dispersion is avoided and the processes can be set accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.