A combined experimental and theoretical approach is used to study the thermal autoxidation of α‐pinene. Four different types of peroxyl radicals are generated; the verbenyl peroxyl radical being the most abundant one. The peroxyl radicals propagate a long radical chain, implying that chain termination does not play an important role in the production of the products. Two distinct types of propagation steps are active in parallel: the abstraction of allylic H atoms and the addition to the unsaturated CC bond. The efficiency for both pathways appears to depend on the structure of the peroxyl radical. The latter step yields the corresponding epoxide product, as well as alkoxyl radicals. Under the investigated reaction conditions the alkoxyl radicals seem to produce both the alcohol and ketone products, the ketone presumably being formed upon the abstraction of the weakly bonded αH atom by O2. This mechanism explains the predominantly primary nature of all quantified products. At higher conversion, co‐oxidation of the hydroperoxide products constitutes an additional, albeit small, source of alcohol and ketone products.
This contribution discusses some aspects crucial for designing optimal and sustainable oxidation processes. The catalyst, although at the heart of the system, is only one decisive design parameter amongst many others. Indeed, an interdisciplinary approach is required to improve existing processes, but also to rationally and systematically access opportunities for oxidation research on renewable feedstock compounds.
The Co(II)/Co(III)-induced decomposition of hydroperoxides is an important reaction in many industrial processes and is referred to as deperoxidation. In the first step of the so-called Haber-Weiss cycle, alkoxyl radicals and Co(III)-OH species are generated upon the reaction of the Co(II) ion with ROOH. The catalytic cycle is closed upon the regeneration of the Co(II) ion through the reaction of the Co(III)-OH species with a second ROOH molecule, thus producing one equivalent of the peroxyl radicals. Herein, the deperoxidation of tert-butylhydroperoxide by dissolved cobalt(II) acetylacetonate is studied by using UV/Vis spectroscopy in situ with a noninteracting solvent, namely, cyclohexane. Kinetic information extracted from experiments, together with quantum-chemical calculations, led to new mechanistic hypotheses. Even under anaerobic conditions, the Haber-Weiss cycle initiates a radical-chain destruction of ROOH propagated by both alkoxyl and peroxyl radicals. This chain mechanism rationalizes the high deperoxidation rates, which are directly proportional to the cobalt concentration up to approximately 75 μM at 333 K. However, at higher cobalt concentrations, a remarkable decrease of the rate is observed. The hypothesis put forward herein is that this remarkable autoinhibition effect could be explained by the hitherto overlooked chain termination of two Co(III)--OH species. The direct competition between the first-order Haber-Weiss initiation and the second-order termination can indeed explain this peculiar kinetic behavior of this homogeneous deperoxidation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.