Under anaerobiosis, Euglena gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. An important enzyme of this unusual pathway is trans-2-enoyl-CoA reductase (EC 1.3.1.44), which catalyzes reduction of enoyl-CoA to acyl-CoA. Trans-2-enoyl-CoA reductase from Euglena was purified 1700-fold to electrophoretic homogeneity and was active with NADH and NADPH as the electron donor. The active enzyme is a monomer with molecular mass of 44 kDa. The amino acid sequence of tryptic peptides determined by electrospray ionization mass spectrometry were used to clone the corresponding cDNA, which encoded a polypeptide that, when expressed in Escherichia coli and purified by affinity chromatography, possessed trans-2-enoyl-CoA reductase activity close to that of the enzyme purified from Euglena. Trans-2-enoyl-CoA reductase activity is present in mitochondria and the mRNA is expressed under aerobic and anaerobic conditions. Using NADH, the recombinant enzyme accepted crotonyl-CoA (k m ؍ 68 M) and trans-2-hexenoyl-CoA (k m ؍ 91 M). In the crotonyl-CoA-dependent reaction, both NADH (k m ؍ 109 M) or NADPH (k m ؍ 119 M) were accepted, with 2-3-fold higher specific activities for NADH relative to NADPH. Trans-2-enoyl-CoA reductase homologues were not found among other eukaryotes, but are present as hypothetical reading frames of unknown function in sequenced genomes of many proteobacteria and a few Gram-positive eubacteria, where they occasionally occur next to genes involved in fatty acid and polyketide biosynthesis. Trans-2-enoyl-CoA reductase assigns a biochemical activity, NAD(P)H-dependent acyl-CoA synthesis from enoylCoA, to one member of this gene family of previously unknown function.
Genomic or cDNA clones for the glycolytic enzyme enolase were isolated from the amitochondriate pelobiont Mastigamoeba balamuthi, from the kinetoplastid Trypanosoma brucei, and from the euglenid Euglena gracilis. Clones for the cytosolic enzyme were found in all three organisms, whereas Euglena was found to also express mRNA for a second isoenzyme that possesses a putative N-terminal plastid-targeting peptide and is probably targeted to the chloroplast. Database searching revealed that Arabidopsis also possesses a second enolase gene that encodes an N-terminal extension and is likely targeted to the chloroplast. A phylogeny of enolase amino acid sequences from 6 archaebacteria, 24 eubacteria, and 32 eukaryotes showed that the Mastigamoeba enolase tended to branch with its homologs from Trypanosoma and from the amitochondriate protist Entamoeba histolytica. The compartment-specific isoenzymes in Euglena arose through a gene duplication independent of that which gave rise to the compartment-specific isoenzymes in Arabidopsis, as evidenced by the finding that the Euglena enolases are more similar to the homolog from the eubacterium Treponema pallidum than they are to homologs from any other organism sampled. In marked contrast to all other glycolytic enzymes studied to date, enolases from all eukaryotes surveyed here (except Euglena) are not markedly more similar to eubacterial than to archaebacterial homologs. An intriguing indel shared by enolase from eukaryotes, from the archaebacterium Methanococcus jannaschii, and from the eubacterium Campylobacter jejuni maps to the surface of the three-dimensional structure of the enzyme and appears to have occurred at the same position in parallel in independent lineages.
Exploiting the differential expression of genes for Calvin cycle enzymes in bundle-sheath and mesophyll cells of the C4 plant Sorghum bicolor L., we isolated via subtractive hybridization a molecular probe for the Calvin cycle enzyme D-ribulose-5-phosphate 3-epimerase (R5P3E)(EC 5.1.3.1), with the help of which several full-size cDNAs were isolated from spinach. Functional identity of the encoded mature subunit was shown by R5P3E activity found in affinity-purified glutatione S-transferase fusions expressed in Escherichia coli and by three-fold increase of R5P3E activity upon induction of E. coli overexpressing the spinach subunit under the control of the bacteriophage T7 promoter, demonstrating that we have cloned the first functional ribulose-5-phosphate 3-epimerase from any eukaryotic source. The chloroplast enzyme from spinach shares about 50% amino acid identity with its homologues from the Calvin cycle operons of the autotrophic purple bacteria Alcaligenes eutrophus and Rhodospirillum rubrum. A R5P3E-related eubacterial gene family was identified which arose through ancient duplications in prokaryotic chromosomes, three R5P3E-related genes of yet unknown function have persisted to the present within the E. coli genome. A gene phylogeny reveals that spinach R5P3E is more similar to eubacterial homologues than to the yeast sequence, suggesting a eubacterial origin for this plant nuclear gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.