Recent reports demonstrate that somatic mouse cells can be directly converted to other mature cell types by using combined expression of defined factors. Here we show that the same strategy can be applied to human embryonic and postnatal fibroblasts. By overexpression of the transcription factors Ascl1, Brn2, and Myt1l, human fibroblasts were efficiently converted to functional neurons. We also demonstrate that the converted neurons can be directed toward distinct functional neurotransmitter phenotypes when the appropriate transcriptional cues are provided together with the three conversion factors. By combining expression of the three conversion factors with expression of two genes involved in dopamine neuron generation, Lmx1a and FoxA2, we could direct the phenotype of the converted cells toward dopaminergic neurons. Such subtypespecific induced neurons derived from human somatic cells could be valuable for disease modeling and cell replacement therapy. C ellular reprogramming, the process by which somatic cells can be converted into induced pluripotent stem (iPS) cells and subsequently differentiated to mature cells, including specific types of neurons, has opened up new possibilities for disease modeling and cellular repair (1-5). Recently, it was shown that somatic cells can also be directly converted to other mature cell types by expression of a specific combinations of genes (6-9). Expression of Ascl1, Brn2, and Myt1l efficiently converted mouse embryonic fibroblasts (MEFs) and postnatal fibroblasts into functional neurons (induced neurons, or iN cells) (10). Cells generated via direct conversion do not pass through a pluripotent state, are probably not tumorigenic, and may serve as an interesting alternative to iPS cells for generating patient-and/or disease-specific neurons.Here, we show the direct conversion of human fibroblasts into functional neurons using the same combination of neural conversion factors used for iN conversion of mouse fibroblasts (10). We also demonstrate that the expression of additional transcription factors leads to the generation of cells with properties of dopaminergic neurons, which is the cell type lost in Parkinson's disease. Our findings provide proof of principle that specific subtypes of iN cells can be produced from human somatic cells by transcription factor-mediated fate instruction combined with the three neural conversion factors. ResultsTo investigate whether direct conversion into neurons from human somatic cells is possible, we established fibroblast cultures from human embryos aged 5.5-7 wk postconception (for details see Table S1). The head, the dorsal part of the embryo containing the spinal cord, and all red organs were removed, and the remaining tissue was dissociated and plated under standard fibroblast conditions (Fig. 1A). After one passage followed by a freeze-thaw cycle, the fibroblast identity and the absence of the neural crest marker SOX10 in the resulting cell lines were confirmed (Fig. 1B, Figs. S1 and S2, and Tables S2 and S3). The cells were then...
Cellular reprogramming is a new and rapidly emerging field in which somatic cells can be turned into pluripotent stem cells or other somatic cell types simply by the expression of specific combinations of genes. By viral expression of neural fate determinants, it is possible to directly reprogram mouse and human fibroblasts into functional neurons, also known as induced neurons. The resulting cells are nonproliferating and present an alternative to induced pluripotent stem cells for obtaining patient-and disease-specific neurons to be used for disease modeling and for development of cell therapy. In addition, because the cells do not pass a stem cell intermediate, direct neural conversion has the potential to be performed in vivo. In this study, we show that transplanted human fibroblasts and human astrocytes, which are engineered to express inducible forms of neural reprogramming genes, convert into neurons when reprogramming genes are activated after transplantation. Using a transgenic mouse model to specifically direct expression of reprogramming genes to parenchymal astrocytes residing in the striatum, we also show that endogenous mouse astrocytes can be directly converted into neural nuclei (NeuN)-expressing neurons in situ. Taken together, our data provide proof of principle that direct neural conversion can take place in the adult rodent brain when using transplanted human cells or endogenous mouse cells as a starting cell for neural conversion.T he ability to reprogram somatic cells to pluripotent stem cells or other somatic cell types by expressing key combinations of genes has opened up new possibilities for disease modeling and cell therapy (1, 2). Using this technique, it is possible to directly reprogram mouse and human fibroblasts into functional neurons, also known as induced neurons (iNs), using viral delivery of the three neural conversion factors achaete-scute complex-like 1 (Ascl1), brain-2 (Brn2a), and myelin transcription factor-like 1 (Myt1l) (ABM) (3, 4). A growing number of studies now show that by altering the combination of genes used for reprogramming, different subtypes of neurons are obtained (3,5,6). Importantly, the resulting cells are nonproliferating, which makes them an interesting alternative to induced pluripotent stem cells as a source of patient-specific neurons for cell replacement therapy, once efficient grafting strategies for these cells are developed.The adult brain has a very limited inherent capacity for repair, and new neurons are only formed in two discrete regions: the subventricular zone of the lateral ventricles, which generates neurons migrating to the olfactory bulb, and the hippocampus (7,8). Experimental studies have shown that these endogenous progenitors can also be recruited to generate new neurons in other regions as well in response to injury (9-11). However, the number of new neurons is very low, their migration is hard to control, and the therapeutic implications are unclear. Several cell types residing outside the neurogenic niche, such as parenchymal...
To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond to cell types previously defined by morphological or physiological criteria and that appear conserved across cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based taxonomy of cell types for mammalian neocortex. This classification should be hierarchical and use a standardized nomenclature. It should be based on a probabilistic definition of a cell type and incorporate data from different approaches, developmental stages and species. A community-based classification and data aggregation model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This community-based classification, nomenclature and data aggregation could serve as an example for cell type atlases in other parts of the body.
Epilepsy is one of the most common neurological disorders, yet its pathophysiology is poorly understood due to the high complexity of affected neuronal circuits. To identify dysfunctional neuronal subtypes underlying seizure activity in the human brain, we have performed single-nucleus transcriptomics analysis of >110,000 neuronal transcriptomes derived from temporal cortex samples of multiple temporal lobe epilepsy and non-epileptic subjects. We found that the largest transcriptomic changes occur in distinct neuronal subtypes from several families of principal neurons (L5-6_Fezf2 and L2-3_Cux2) and GABAergic interneurons (Sst and Pvalb), whereas other subtypes in the same families were less affected. Furthermore, the subtypes with the largest epilepsy-related transcriptomic changes may belong to the same circuit, since we observed coordinated transcriptomic shifts across these subtypes. Glutamate signaling exhibited one of the strongest dysregulations in epilepsy, highlighted by layer-wise transcriptional changes in multiple glutamate receptor genes and strong upregulation of genes coding for AMPA receptor auxiliary subunits. Overall, our data reveal a neuronal subtype-specific molecular phenotype of epilepsy.
Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.