We report STM-induced desorption of H from Si(100)-H(2×1) at negative sample bias. The desorption rate exhibits a power-law dependence on current and a maximum desorption rate at −7 V. The desorption is explained by vibrational heating of H due to inelastic scattering of tunneling holes with the Si-H 5σ hole resonance. The dependence of desorption rate on current and bias is analyzed using a novel approach for calculating inelastic scattering, which includes the effect of the electric field between tip and sample. We show that the maximum desorption rate at −7 V is due to a maximum fraction of inelastically scattered electrons at the onset of the field emission regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.