Volatile compounds emanated from human skin were studied by gas chromatography/mass spectrometry (GC/MS). The purpose of this study was to identify compounds that may be human-produced kairomones which are used for host location by the mosquito, Aedes aegypti (L.). The procedure used to collect volatiles was chosen because of prior knowledge that attractive substances can be transferred from skin to glass by handling. Laboratory bioassays have shown that the residuum on the glass remains attractive to mosquitoes until the compounds of importance evaporate. The sampling and analytical procedures modeled the above-cited process as closely as possible except that the evaporation of compounds from the glass surface was accomplished by thermal desorption from glass beads in a heated GC injection port. This made possible the solventless injection of volatiles onto the column. The compounds were cryofocused on the head of the column with liquid nitrogen prior to GC separation. A single stage of mass spectrometry on a triple quadrupole instrument was used for mass analysis. A combination of electron ionization and pulsed positive ion/negative ion chemical ionization modes on two different GC columns (one polar, one relatively nonpolar) was used to identify most of the 346 compound peaks detected by this technique.
Handled glass has the ability to collect and concentrate nonaqueous human skin emanations while minimizing the collection of aqueous perspiration. Compounds originating from the skin and collected on glass have previously been found to attract the Aedes aegypti species of mosquito. Therefore, glass beads were used as the medium to collect skin emanations from humans for subsequent chemical analysis. This process consisted of a 5-15-min collection of sample on glass beads, followed by loading the beads into a gas chromatograph (GC) injector insert for subsequent desorption of the collected compounds onto the GC column. After cryofocusing by liquid nitrogen at the head of the column, the thermally desorbed compounds were analyzed by GC/MS. Microscale purge and trap introduction was also used to provide complementary information. In this case, the beads are held in a round-bottom flask, purged with nitrogen, and heated as the concentrator collects the headspace above the beads. The chromatograms produced by both of these sample introduction methods demonstrate good resolution of a complex sample. Cryofocusing volatiles from handled glass allowed identification of lactic acid, aliphatic fatty acids, and other polar to nonpolar compounds of moderate volatility while purge and trap allowed detection of nonpolar to moderately polar compounds of high volatility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.