Four-way DNA intermediates, also known as Holliday junctions, are formed during homologous recombination and DNA repair, and their resolution is necessary for proper chromosome segregation. Here we identify nucleases from Saccharomyces cerevisiae and human cells that promote Holliday junction resolution, in a manner analogous to that shown by the Escherichia coli Holliday junction resolvase RuvC. The human Holliday junction resolvase, GEN1, and its yeast orthologue, Yen1, were independently identified using two distinct experimental approaches: GEN1 was identified by mass spectrometry following extensive fractionation of HeLa cell-free extracts, whereas Yen1 was detected by screening a yeast gene fusion library for nucleases capable of Holliday junction resolution. The eukaryotic Holliday junction resolvases represent a new subclass of the Rad2/XPG family of nucleases. Recombinant GEN1 and Yen1 resolve Holliday junctions by the introduction of symmetrically related cuts across the junction point, to produce nicked duplex products in which the nicks can be readily ligated.
Ataxia oculomotor apraxia-1 (AOA1) is a neurological disorder caused by mutations in the gene (APTX) encoding aprataxin. Aprataxin is a member of the histidine triad (HIT) family of nucleotide hydrolases and transferases, and inactivating mutations are largely confined to this HIT domain. Aprataxin associates with the DNA repair proteins XRCC1 and XRCC4, which are partners of DNA ligase III and ligase IV, respectively, suggestive of a role in DNA repair. Consistent with this, APTX-defective cell lines are sensitive to agents that cause single-strand breaks and exhibit an increased incidence of induced chromosomal aberrations. It is not, however, known whether aprataxin has a direct or indirect role in DNA repair, or what the physiological substrate of aprataxin might be. Here we show, using purified aprataxin protein and extracts derived from either APTX-defective chicken DT40 cells or Aptx-/- mouse primary neural cells, that aprataxin resolves abortive DNA ligation intermediates. Specifically, aprataxin catalyses the nucleophilic release of adenylate groups covalently linked to 5'-phosphate termini at single-strand nicks and gaps, resulting in the production of 5'-phosphate termini that can be efficiently rejoined. These data indicate that neurological disorders associated with APTX mutations may be caused by the gradual accumulation of unrepaired DNA strand breaks resulting from abortive DNA ligation events.
Defects in cellular DNA repair processes have been linked to genome instability, heritable cancers, and premature aging syndromes. Yet defects in some repair processes manifest themselves primarily in neuronal tissues. This review focuses on studies defining the molecular defects associated with several human neurological disorders, particularly ataxia with oculomotor apraxia 1 (AOA1) and spinocerebellar ataxia with axonal neuropathy 1 (SCAN1). A picture is emerging to suggest that brain cells, due to their nonproliferative nature, may be particularly prone to the progressive accumulation of unrepaired DNA lesions.
Holliday junction (HJ) resolution is essential for chromosome segregation at meiosis and the repair of stalled/collapsed replication forks in mitotic cells. All organisms possess nucleases that promote HJ resolution by the introduction of symmetrically related nicks in two strands at, or close to, the junction point. GEN1, a member of the Rad2/XPG nuclease family, was isolated recently from human cells and shown to promote HJ resolution in vitro and in vivo. Here, we provide the first biochemical/structural characterization of GEN1, showing that, like the Escherichia coli HJ resolvase RuvC, it binds specifically to HJs and resolves them by a dual incision mechanism in which nicks are introduced in the pair of continuous (noncrossing) strands within the lifetime of the GEN1–HJ complex. In contrast to RuvC, but like other Rad2/XPG family members such as FEN1, GEN1 is a monomeric 5′-flap endonuclease. However, the unique feature of GEN1 that distinguishes it from other Rad2/XPG nucleases is its ability to dimerize on HJs. This functional adaptation provides the two symmetrically aligned active sites required for HJ resolution.
Yeast telomeres comprise irregular TG₁₋₃ DNA repeats bound by the general transcription factor Rap1. Rif1 and Rif2, along with Rap1, form the telosome, a protective cap that inhibits telomerase, counteracts SIR-mediated transcriptional silencing, and prevents inadvertent recognition of telomeres as DNA double-strand breaks. We provide a molecular, biochemical, and functional dissection of the protein backbone at the core of the yeast telosome. The X-ray structures of Rif1 and Rif2 bound to the Rap1 C-terminal domain and that of the Rif1 C terminus are presented. Both Rif1 and Rif2 have separable and independent Rap1-binding epitopes, allowing Rap1 binding over large distances (42-110 Å). We identify tetramerization (Rif1) and polymerization (Rif2) modules that, in conjunction with the long-range binding, give rise to a higher-order architecture that interlinks Rap1 units. This molecular Velcro relies on Rif1 and Rif2 to recruit and stabilize Rap1 on telomeric arrays and is required for telomere homeostasis in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.