Most of the experimental mistuning studies are performed using a blisk with random mistuning only. Intentional mistuning is often investigated analytically with respect to aeroelasticity, as it is well known that intentional mistuning reduces the flutter risk due to less interaction between the blades. In this paper, an intentionally mistuned test blisk is investigated both analytically and experimentally with respect to free and forced vibrations. First, free vibrations are studied and aliasing effects for the intentionally mistuned blisk are analyzed in comparison with a tuned blisk. A comparison between the experimentally determined dominant nodal diameters and the computed ones shows good agreement. Then, the blisk is experimentally excited by a travelling wave for various engine orders. Similar investigations are performed with a FEM model of the blisk and a reduced-order code. The amplification factor for some modes and several blisks is compared. The influence of the disc onto the blade mode shapes is studied for the tuned and mistuned case without and with aerodynamic coupling effects. Cyclic spacing of vanes is a concept to reduce the vibration level of downstream rotor blades by distributing the excitation onto more engine orders while reducing the overall excitation level. In this paper it is shown for blisks with and without intentional mistuning that care should be taken in applying this concept in the vicinity of veering regions, because the amplification factor in a veering region may become much higher than compared to other nodal diameters.
Impulse mistuning is an alternative approach for the reduction of vibration stresses of blades and vanes. In contrast to most other approaches it is not a direct energy dissipation approach but a mistuning based one. However, the approach is not aimed at making use of the geometrical mistuning of the structure (e.g. a blade or a vane stage). Mistuners, specially designed small bodies are placed at specific locations inside of the component e.g. of a blade or of a vane. They do not directly dissipate enough energy to cause relevant damping like a friction or friction-impact damper, because of the small mass involved, but rather mistune the eigen frequencies of the structure using impulses (impacts). As a result, the structure absorbs less energy at the original resonance and hence answers with lower vibration amplitude. In fact, impulse mistuning is a special case of absorption — the so called Targeted Energy Transfer (TET) with “Vibro-Impact Nonlinear Energy Sinks” (VI-NES) — with very small impact mass involved and thus a negligible role of dissipation while experiencing a significant amount of absorption. The energy will be transferred (or “pumped”) to other resonances, sometimes outside of the primary resonance crossing and partially dissipated. We use the names “impulse mistuning” or “mistuners” instead of TET or VI-NES because (in our opinion) it better describes the physics of this special kind of absorption. In the paper, the design and validation of two impulse mistuning systems, for a blade stage and a vane cluster of a lower power turbine, are presented.
Impulse mistuning is an alternative approach for the reduction of vibration stresses of blades and vanes. In contrast to most other approaches, it is not a direct energy dissipation approach but a mistuning based one. However, the approach is not aimed at making use of the geometrical mistuning of the structure (e.g., a blade or a vane stage). Mistuners, specially designed small bodies are placed at specific locations inside of the component, e.g., of a blade or of a vane. They do not directly dissipate enough energy to cause relevant damping like a friction or friction-impact damper, because of the small mass involved, but rather mistune the eigen frequencies of the structure using impulses (impacts). As a result, the structure absorbs less energy at the original resonance and hence answers with lower vibration amplitude. In fact, impulse mistuning is a special case of absorption—the so-called targeted energy transfer (TET) with “vibro-impact nonlinear energy sinks” (VI-NES)—with very small impact mass involved, and thus, a negligible role of dissipation while experiencing a significant amount of absorption. The energy will be transferred (or “pumped”) to other resonances, sometimes outside of the primary resonance crossing and partially dissipated. We use the names “impulse mistuning” or “mistuners” instead of TET or VI-NES because (in our opinion) it better describes the physics of this special kind of absorption. In the paper, the design and validation of two impulse mistuning systems, for a blade stage and a vane cluster of a lower power turbine, are presented.
Determination of the amplification factor due to mistuning is an important task for the safe design of turbomachinery, specially for blisk-design with low mechanical damping. The complexity of the environment effects increases from measurements in the laboratory to measurements in test rigs and engines. Also the uncertainties of the boundary conditions increase. In this paper measurements of the amplification factors due to mistuning at various conditions are presented, starting from simple lab measurements up to rig measurements. Calculations with a Reduced-Order Code based on measured frequency distributions and FEM are performed and compared with the measurements. For the determination of the amplification factor a mistuning rig with travelling wave excitation was built. For a small demo-blisk the amplification factor was determined. Then a real blisk was tested. Afterward, the same blisk was built into a two-stage axial compressor rig. Here, tip-timing measurements were performed under rig conditions (centrifugal force, flow conditions). As tip-timing measures the vibration amplitude of each single airfoil, an amplification factor can be determined for each resonance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.