Objectives:
In children, coronavirus disease 2019 is usually mild but can develop severe hypoxemic failure or a severe multisystem inflammatory syndrome, the latter considered to be a postinfectious syndrome, with cardiac involvement alone or together with a toxic shock like-presentation. Given the novelty of severe acute respiratory syndrome coronavirus 2, the causative agent of the recent coronavirus disease 2019 pandemic, little is known about the pathophysiology and phenotypic expressions of this new infectious disease nor the optimal treatment approach.
Study Selection:
From inception to July 10, 2020, repeated PubMed and open Web searches have been done by the scientific section collaborative group members of the European Society of Pediatric and Neonatal Intensive Care.
Data Extraction:
There is little in the way of clinical research in children affected by coronavirus disease 2019, apart from descriptive data and epidemiology.
Data Synthesis:
Even though basic treatment and organ support considerations seem not to differ much from other critical illness, such as pediatric septic shock and multiple organ failure, seen in PICUs, some specific issues must be considered when caring for children with severe coronavirus disease 2019 disease.
Conclusions:
In this clinical guidance article, we review the current clinical knowledge of coronavirus disease 2019 disease in critically ill children and discuss some specific treatment concepts based mainly on expert opinion based on limited experience and the lack of any completed controlled trials in children at this time.
BackgroundPolymorphism in antigens is a common mechanism for immune evasion used by many important pathogens, and presents major challenges in vaccine development. In malaria, many key immune targets and vaccine candidates show substantial polymorphism. However, knowledge on antigenic diversity of key antigens, the impact of polymorphism on potential vaccine escape, and how sequence polymorphism relates to antigenic differences is very limited, yet crucial for vaccine development. Plasmodium falciparum apical membrane antigen 1 (AMA1) is an important target of naturally-acquired antibodies in malaria immunity and a leading vaccine candidate. However, AMA1 has extensive allelic diversity with more than 60 polymorphic amino acid residues and more than 200 haplotypes in a single population. Therefore, AMA1 serves as an excellent model to assess antigenic diversity in malaria vaccine antigens and the feasibility of multi-allele vaccine approaches. While most previous research has focused on sequence diversity and antibody responses in laboratory animals, little has been done on the cross-reactivity of human antibodies.MethodsWe aimed to determine the extent of antigenic diversity of AMA1, defined by reactivity with human antibodies, and to aid the identification of specific alleles for potential inclusion in a multi-allele vaccine. We developed an approach using a multiple-antigen-competition enzyme-linked immunosorbent assay (ELISA) to examine cross-reactivity of naturally-acquired antibodies in Papua New Guinea and Kenya, and related this to differences in AMA1 sequence.ResultsWe found that adults had greater cross-reactivity of antibodies than children, although the patterns of cross-reactivity to alleles were the same. Patterns of antibody cross-reactivity were very similar between populations (Papua New Guinea and Kenya), and over time. Further, our results show that antigenic diversity of AMA1 alleles is surprisingly restricted, despite extensive sequence polymorphism. Our findings suggest that a combination of three different alleles, if selected appropriately, may be sufficient to cover the majority of antigenic diversity in polymorphic AMA1 antigens. Antigenic properties were not strongly related to existing haplotype groupings based on sequence analysis.ConclusionsAntigenic diversity of AMA1 is limited and a vaccine including a small number of alleles might be sufficient for coverage against naturally-circulating strains, supporting a multi-allele approach for developing polymorphic antigens as malaria vaccines.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-014-0183-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.